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Size distributions of intracellular 
condensates reflect competition between 
coalescence and nucleation

Daniel S. W. Lee1,5, Chang-Hyun Choi    2, David W. Sanders2, Lien Beckers2,3, 
Joshua A. Riback    2,6, Clifford P. Brangwynne    2,3   & Ned S. Wingreen    1,4 

Phase separation of biomolecules into condensates has emerged as a 
mechanism for intracellular organization and affects many intracellular 
processes, including reaction pathways through the clustering of enzymes 
and pathway intermediates. Precise and rapid spatiotemporal control 
of reactions by condensates requires tuning of their sizes. However, 
the physical processes that govern the distribution of condensate sizes 
remain unclear. Here we show that both native and synthetic condensates 
display an exponential size distribution, which is captured by Monte 
Carlo simulations of fast nucleation followed by coalescence. In contrast, 
pathological aggregates exhibit a power-law size distribution. These distinct 
behaviours reflect the relative importance of nucleation and coalescence 
kinetics. We demonstrate this by utilizing a combination of synthetic 
and native condensates to probe the underlying physical mechanisms 
determining condensate size. The appearance of exponential distributions 
for abrupt nucleation versus power-law distributions under continuous 
nucleation may reflect a general principle that determines condensate size 
distributions.

Condensates of biological macromolecules play critical roles in many 
biological processes, including ribosome synthesis1, DNA organiza-
tion2 and repair3 and stress responses4,5. In the context of metabolism, 
co-clustering enzymes into condensates can increase the efficiency 
of reactions by spatially co-localizing enzymes with their substrates6, 
but only for a restricted range of condensate sizes7. Similarly, large 
deviations from typical condensate sizes, which have been described 
for many nuclear condensates, including nucleoli1, Cajal bodies8 and 
nuclear speckles9, are associated with dysfunction and pathology. For 
instance, increased nucleolar size is associated with increased ribosome 
biogenesis10 and has been associated with both cancer11 and Hutchin-
son–Gilford progeria12. Moreover, condensates are strongly linked 
to pathological aggregation diseases such as Alzheimer’s and ALS. 

In these cases, there are many remaining questions about how large 
condensates might nucleate irreversible aggregates, and whether large 
aggregates are themselves pathological or merely end-stage outcomes 
from smaller pathological assemblies.

In non-living colloidal systems, the kinetics of coarsening pro-
cesses are well known to be inherently linked with and to generally 
determine cluster size distributions13–16. By contrast, although biomo-
lecular condensates have been observed in living cells for many years, 
their size distributions and coarsening dynamics have been rarely 
examined in detail. Among the few previously studied examples are 
the nucleoli in Xenopus laevis and in cultured human cells, which have 
been shown to have power-law size distributions1,17. Interestingly, such 
broad, scale-free size distributions are at odds with the suggestion that 
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To further interrogate this behaviour in a more tractable cell line, 
we utilized a monoclonal HEK293-derived (‘HEK-D’; Methods) cell 
line with eYFP-tagged SRRM2, another speckle marker (Fig. 1c)26, and 
expressing mCherry (mCh)-tagged NPM1 to mark the nucleoli. We first 
verified that an exponential was still observed in this cell line (Fig. 1e, 
dashed line). Previous work9 suggested that treatment with the tran-
scriptional inhibitor 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside 
(DRB) accelerates collisions between speckles, facilitating fusion. 
We asked whether this increase in dynamics would alter the form of 
the size distribution. Following 4 h of treatment with DRB, we find an 
increase in mean speckle size from 0.92 ± 0.02 µm3 (mean ± s.e.m. over 
85 cells) in the non-treated control to 1.16 ± 0.03 µm3 (78 cells), consist-
ent with the literature. However, despite this average size increase, 
both distributions were exponential (Fig. 1e). Similar results were 
observed using actinomycin D (Extended Data Fig. 1). By contrast, 
in nucleoli, we observed a power-law distribution, that is, f(V) ~ Vk, 
with a slope k ≈ –1 (Extended Data Fig. 1)17, and a marked decrease in 
nucleolar size after both ActD and DRB treatment30, consistent with  
previous work9,17.

To examine the origin of these distributions in an even more exper-
imentally tractable platform, we utilized the Corelet optogenetic sys-
tem whose nucleation and coarsening dynamics have been well 
characterized21,23,31. Briefly, the Corelet system consists of two compo-
nents (Fig. 2a): a 24-mer ferritin core whose monomers are fused to a 
GFP and an improved light-induced dimer (iLID) domain plus a protein, 
here the intrinsically disordered region of FUS, fused to an mCh fluo-
rophore and a stringent starvation protein B (sspB) domain. On 
blue-light activation, the iLID and sspB heterodimerize, resulting in 
the oligomerization of FUS intrinsically disordered region, which drives 
phase separation within seconds after light activation31. Using this 
biomimetic system expressed in human osteosarcoma (U2OS) cells, 
we activated and imaged for 105 min (ref. 21); we observed that the CCDF 
is again consistent with an exponentially decaying size distribution. 
By examining the distribution as a function of time since light-initiated 
phase separation, we find that for a particular cell, the CCDF retains 
the linear shape on a semi-log plot, but changes the slope as the con-
densates coarsen and the average condensate size grows (Fig. 2b). To 
confirm that this behaviour was consistent across the cells and time-
points, we rescaled each CCDF by mean condensate size 〈V(t)〉 for each 
cell and time, revealing that these distributions obeyed the same scal-
ing, all of them collapsing onto a line with a slope of −1 (dashed line) 
corresponding to an exponential distribution (Fig. 2c). Finally, to verify 
the Corelet exponential cluster size distribution, we also calculated 
and compared the volume-weighted or ‘particle-centric’ mean 〈Vp〉 and 
variance σ2p for each nucleus and timepoint. These quantities are 
defined as the moments of the cluster size distribution weighted by 
the size of each droplet, that is, ⟨V⟩p =

ΣV2f
ΣVf

 and σ2p = ⟨⟨V2⟩p − ⟨V⟩p⟩ , 

which should be less noisy but obey the same relation as the 
cluster-centric distribution for a system with fixed density clusters (for 
example, liquid–liquid phase separation). We note that the points fall 
along the line ⟨V2⟩p = σ

2
p expected for an exponential distribution  

(Fig. 2d, with a slight horizontal shift that can be explained by the bias 
in the mean arising from a minimum detection size; Supplementary 
Note and Extended Data Fig. 2).

Exponential distributions are independent of subdiffusion
To quantitatively understand the underlying basis for the exponential 
size distribution of the condensates described above, we developed 
Monte Carlo simulations to replicate and manipulate the coagulation 
dynamics. We hypothesized that, in general, a fast quench—where 
many small condensates nucleate nearly simultaneously, followed by 
growth via slow coagulation—would produce an exponential distribu-
tion. In our simulations, we first generated N (generally, 1,500) spheres 
whose initial volumes v0 were sampled from a uniform distribution in 
the range of [1, 2], which were randomly placed in a cubic box of side 

endogenous condensates have well-defined, functionally regulated 
sizes. However, in more typical rapidly dividing mammalian cells, 
nuclear bodies (such as nucleoli and speckles8,18) tend to appear fol-
lowing mitosis and coalesce19, but mechanical constraints probably 
due to chromatin result in subdiffusion and slow coarsening, limiting 
the growth of droplets on physiological timescales20–23. This picture is 
consistent with other recent work that has taken advantage of synthetic 
nuclear condensates, which form quickly24 but grow and coalesce 
slowly due to their constrained, subdiffusive motion21.

In some pathological contexts, cytoplasmic aggregates known as 
inclusion bodies or aggresomes are continuously produced, potentially 
providing a continually changing size distribution. For example, in the 
case of Huntington’s disease, the progressive misfolding of mutant 
Huntingtin protein exhibiting abnormally large stretches of polyglu-
tamine or ‘polyQ’ repeats leads to the steady accumulation of material 
into irreversible aggregates25. Although they have more solid-like 
material properties than most physiological condensates, pathological 
aggregates can also generally move throughout the cell, and stick or 
fuse on collision, forming progressively larger structures that may even 
span the entire cell26 and are associated with neuronal dysfunction27 and 
cytotoxicity. How such steady accumulation of aggregating material 
is similar to or differs from the coarsening dynamics of physiological 
condensates, as well as the physical and biological principles that 
underlie such phenomena more generally, remains poorly understood.

Here we combine live-cell experiments and simulations to eluci-
date general principles linking condensate growth dynamics and size 
distributions. We demonstrate that endogenous nuclear speckles, 
which exhibit fast nucleation followed by gradual coalescence, yield 
an exponential size distribution, which can also be recapitulated in 
an engineered intracellular phase-separating system. By contrast, 
cytoplasmic Huntingtin aggregates reveal that continuous material 
production instead leads to a power-law distribution. We describe the 
differences that account for the scaling forms of the condensate size 
distribution in terms of a ‘preferential attachment’ effect, where merger 
probability and consequently growth rate are directly related to the 
condensate size. These findings may provide an insight into how cells 
biophysically regulate the size and number of condensates to gener-
ate a range of distributions, including exponentials and power laws.

Results
Nuclear condensates exemplify exponential size distributions
We first sought to determine the distribution of sizes of an endogenous 
nuclear condensate, namely, the nuclear speckle. Previous work sug-
gested that speckles form quickly after mitosis and grow by coales-
cence8, thus acting as a model for the dynamics of a typical condensate. 
We imaged stem cells (induced pluripotent stem cells (iPSCs)) in which 
SON—a known marker of speckles28—was endogenously tagged with a 
green fluorescent protein (GFP) (Fig. 1a), since overexpressing conden-
sate constituents can alter the condensate size29. We then segmented 
the speckles in three dimensions and quantified the probability density 
f(V, t) of condensate volume V at time t. Because the size distribution 
is highly sensitive to binning and cell-to-cell variation, we first consid-
ered the cumulative distribution function (CDF) of condensate sizes 
for each cell:

F (V, t) = ∫V0 f (V′, t)dV′,

and rescaled these distributions by each cell’s average condensate 
volume. We averaged over the rescaled distributions to account for 
cell-to-cell variation and finite sampling, and plotted the complemen-
tary cumulative distribution function (CCDF) as CCDF = 1 – F. We found 
that the nuclear speckle CCDF as a function of condensate volume V is 
linear on a semi-log plot for all timepoints, implying that these conden-
sates are well described by an exponentially decaying size distribution 
(Fig. 1b, dashed line).

http://www.nature.com/naturephysics
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length L, such that the input volume fraction is vf = Nv0/L3 (generally 
set to 0.05). Spheres whose initial positions overlapped were merged 
by replacing them with a larger sphere centred at their centre of mass 
and conserving volume (Fig. 3a). The spheres were then allowed to 
move following the fractional Brownian motion trajectories generated 
by wavelet synthesis32 with an input exponent α, that is, ⟨rrr2⟩ = 2dDτα 
for displacement rrr, dimension d, diffusion coefficient D and time lag 
τ. Thus, the simulations could be tuned to mimic subdiffusive (α < 1) 
or diffusive (α = 1) behaviour, a physiologically relevant parameter, 
considering the ubiquity of subdiffusion in cells21,33,34. In the simula-
tions, spheres diffused according to the specified dynamics and were 
merged on contact, consistent with the observation in the Corelet 
system that collisions nearly always result in coalescence. We found 
that the size-dependent rate of mergers agreed with predictions from 
coagulation theory (Extended Data Fig. 3)35.

We ran replicates over a range of (sub)diffusive conditions and cal-
culated the distribution of volumes after a fixed time. First, we verified 
that the coarsening agreed with previous theory21, which predicted that 
V/V0 ≈ (t/t0)α; using the initial value of t0 = 100, the volume trajectories 
fell along a line with slope 1 for 1.0–1.5 decades in time (Fig. 3b). Then, to 
analyse the size distributions, we plotted the sphere size distribution and 
rescaled by the average sphere volume as in the analysis of the experimen-
tal data, observing exponential distributions under all the conditions for 
example timepoints (Fig. 3c). The particle-wise mean versus variance for 
all the timepoints beyond t0 was also plotted (Fig. 3d) for several values 
of diffusive exponent α, also yielding a line with a slope characteristic of 
an exponential distribution, with the exception of late times, when the 
number of spheres became very small. Thus, in simulations with a wide 
range of diffusive exponents and in experiments with various synthetic 
and endogenous condensates, we observed exponential distributions.

d

c

a

e

N
on

-t
re

at
ed

+D
RB

10 µm

10 µm

b

10 µm

eGFP-SON

SRRM2-eYFP

V (µm3)

WT, N = 85

DRB, N = 78

V/�V�

V/�V�

0

10–1.5

10–1.5

10–2

0 1 2 3 4

10–1.0

10–1

C
C

D
F

C
C

D
F

C
C

D
F

10–0.5

10–0.5

100

1 2 3 4

10–3

10–2

10–1

100

100

0 2 64

Fig. 1 | Endogenous nuclear speckles display exponential distributions 
before and after transcriptional inhibition. a, Exemplary maximum-projected 
image of iPSCs tagged with eGFP-SON and imaged in three dimensions. Nuclear 
outlines are highlighted in white. b, For each nucleus (N = 453), speckles were 
segmented in three dimensions, and the CCDF was calculated, rescaled by 
mean speckle volume in each nucleus and averaged over the nuclei, revealing 
good agreement with an exponential distribution (dashed line). The error bars 
reflect the standard error of the mean (s.e.m.) over the cells. c, Nuclear speckles 
were labelled in HEK-D cells by tagging SRRM2 with eYFP and imaged in three 

dimensions; nuclear outlines are highlighted in blue. d, Treatment with the 
transcriptional inhibitor DRB resulted in larger, brighter speckles and aberrant 
nuclear morphology. Nuclear outlines are highlighted in orange. e, CCDF was 
calculated for both non-treated control (N = 85; blue points) and following 4 h of 
treatment with 50 μg ml–1 DRB (N = 78; orange points), resulting in an increase in 
average speckle size from 0.92 ± 0.02 to 1.16 ± 0.03 µm3 (mean ± s.e.m.), giving 
linear CCDFs with slightly different slopes on a semi-log plot. Collapsing by 
rescaling by the average speckle volume (inset) confirms that both distributions 
remain exponential. The error bars reflect the s.e.m. over cells.
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Slow polyQ nucleation results in a power-law distribution
Our findings thus far suggest that the rapid nucleation of small con-
densates followed by slower coarsening due to coalescence generically 
results in an exponential distribution. To further elucidate how the 
relative timescales of nucleation and coagulation affect the scaling 
of the condensate size distribution, we next considered a contrast-
ing system characterized by the continuous, sustained nucleation of 
new small condensates. Specifically, we utilized the Huntingtin polyQ 
exon 1 (Htt-polyQ) system, which—unlike the above systems—exhibits 
a slow and steady increase in the total aggregate material with time. 
Exogenous eGFP-Htt-polyQ protein was lentivirally expressed in HeLa 
cells to induce aggregate formation. Consistent with previous work25, 
eGFP-Htt-Q31 did not form aggregates, but eGFP-Htt-Q73 formed large 
aggregates in perinuclear regions of the cytoplasm within four days 
following infection (Fig. 4a). These aggregates were observed to nucle-
ate over the span of hours and merge on contact (Fig. 4b). To quantify 
the production dynamics, we measured the total projected area of 
aggregated material as a function of time, finding a roughly constant 
average production rate of approximately 0.04 ± 0.01 µm2 s–1 (Fig. 4b), 

which corresponds to an increase of 2.28 ± 0.24 times over the observed 
interval (Extended Data Fig. 4); this contrasts with the Corelet system, 
which generally remained stable in the total condensate volume, fol-
lowing an initial nucleation period (Extended Data Fig. 2a,b).

To examine the effect of these contrasting kinetics, we quantified 
the size distributions of polyQ aggregates. To calculate the per-cell 
distribution and avoid binning artifacts, a CDF was calculated for each 
cell and averaged over the cells. The resulting CCDF was well fit by a 
power law, that is, CCDF ≈ Vk̃ with exponent k̃ = –0.41 ± 0.02, noting 
that k = k̃ + 1 thus corresponds to an exponent of −1.41 for the probabil-
ity distribution function (Fig. 4c and Extended Data Fig. 5); the CCDF 
was poorly fit by an exponential (Fig. 4c, inset).

Injection–collision rate ratio controls size distributions
We hypothesized that the broad power-law distribution observed in the 
polyQ system is due to the similarity of the timescales for the appear-
ance of new aggregates and for mergers of existing aggregates. To 
test this idea, we returned to our Monte Carlo simulations to model 
the slow nucleation of the polyQ system. Specifically, we modified 
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Fig. 2 | Synthetic nuclear condensates display exponential distributions as 
they coarsen. a, Synthetic Corelet system produces nuclear condensates on 
demand. The FUSN-mCherry-sspB and iLID-eGFP-ferritin fusion proteins are 
co-expressed in the nucleus. In the presence of blue light, sspB and iLID bind 
quickly, decorating the 24-mer ferritin core with oligomerized FUSN, driving 
oligomerization and phase separation (top row). b, CCDF of condensate volumes 
for the nucleus shown in a plotted on a semi-log scale reveals a progressively 
decreasing slope as the droplets coarsen in time and the mean condensate size 
increases following the initial quench (<5 min). c, For 18 nuclei, CCDFs rescaled by 
mean condensate volume in each nucleus were obtained at the timepoints 

depicted in b (reanalysed data from another work21) and compared with the 
expectation for an exponential distribution (dashed line). d, To further verify 
that the droplet size distributions are exponential, we calculated the mass-

weighted or particle-wise mean and variance, defined as ⟨V⟩p =
ΣpVV2

ΣpVV
 and 

σ2p = ⟨⟨V2⟩p − ⟨V⟩p⟩, respectively. These quantities were calculated for each 

nucleus every 25 min starting from 5 to 105 min following initial activation; the 
variance was plotted against the mean on a log–log plot and compared with the 
expected slope of 2 for an exponential distribution (dashed line).
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the simulations such that spheres appear at a fixed injection rate of 
J spheres per timestep, rather than all at once at t = 0 (Fig. 5a). For a 
range of J values, we ran simulations until a fixed number of spheres 
were injected (the same for every simulation), and then calculated the 
CCDFs (Fig. 5b). Although the simulations varied in total duration as 
1/J, we reasoned that the relevant timescale in the system was set by 
the diffusion of spheres; therefore, changing the total duration and 
injection rate effectively varied the relative rates of merger and mate-
rial production. For relatively high values of J (J > 0.1), the resulting 
distributions were approximately exponential, but for low values of J 
(J < 0.1), the distributions were more power-law like (Fig. 5b), consist-
ent with previous work1,36. In particular, we note that the J = 0.01 case 
produces a power-law-like probability distribution function with an 
exponent of k = –1.51 ± 0.28 (Extended Data Fig. 5), very close to the 

power-law exponent observed in our polyQ experiments. This sug-
gests that the slow addition of new material drives the system towards 
a broader distribution of sizes, associated with a power-law distribution 
with exponent of k = –1.5. Similarly, we reasoned that if decreasing J 
results in a broader distribution because injection becomes slower 
relative to the merger, then conversely, slowing down the merger rate 
should similarly recover an exponential distribution. Therefore, we 
held J fixed at a value of 0.01 and varied the subdiffusive exponent 
in our simulations. We found that decreasing the subdiffusive expo-
nent and thus slowing down mergers indeed yielded an exponential  
distribution (Fig. 5c).

Given that simply changing the rate of injection of new material 
was sufficient to change the form of distribution from an exponential to 
a power law, this provided an opportunity to track down the underlying 
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mechanism responsible for these qualitatively different outcomes in 
silico. We hypothesized that in the case of low J, the first spheres to 
be injected have more opportunities to merge and consume smaller 
spheres, which might result in preferential attachment onto larger 
spheres—such preferential processes have been shown in a wide variety 
of contexts to generate power-law distributions37–39. We, therefore, 
analysed the collision events of the respective systems, selecting the 
extreme J = 5.00 and J = 0.01 cases. First, we specifically considered 
mergers involving ‘monomeric’ spheres, that is, spheres that had been 
injected and not yet undergone any mergers. We recorded the size of 
the spheres with which they merged, normalized by the mean sphere 
size at the moment of merger, finding that for J = 5.00, monomeric 
spheres typically merged with spheres close to the mean sphere size, 
whereas for J = 0.01, the distribution of merger partners was much 
wider, reflecting the bias of collisions towards spheres much larger than 
the mean (Fig. 5d). Furthermore, we calculated the time of injection 
for the spheres with which monomer spheres collided, normalized by 
the total duration of the simulation, finding that the merger fraction 
decreases linearly with injection in the fast-injection case (Fig. 5e). 
However, in the slow-injection case, the merger fraction was even 
more strongly dependent on the injection time of the merger partner, 
with approximately 80% of monomeric spheres merging with a sphere 
that had originally been injected within the first 25% of the simulation  
(Fig. 5e), matching our intuition that mergers were heavily biased 
towards ‘older’ spheres.

Based on this analysis, we hypothesized that the preferential 
attachment effect in this system was driven by the competition between 
mergers and injection. To generalize this to the wide, multiparametric 
space in this system, we derived an expression for a dimensionless 

number, namely, χ = τinject

τmerge
, which compares merger and injection 

timescales predicted with the input parameters (Supplementary Note); 
for χ > 1, injection is slow and there is a strong bias towards collision 
with the largest spheres, whereas if χ < 1, merger is slow and collision 
probabilities are roughly size independent, resulting in an exponential 
size distribution. The merger timescale τmerge is given by the time 
required to close the distance between the spheres by (sub)diffusion, 

that is, τmerge =
1

K(α)ρ
, where ρ is total number of injected spheres per 

system volume and K(α) is the collision rate constant, whose depend-
ence on the diffusive exponent α is non-trivial and was empirically 
calculated via simulation (Extended Data Fig. 6). The injection time-
scale τinject is the time required to inject all the spheres into the system, 

that is, τinject =
ρ

j
, where j = J

Vsys
 is the rate of injection of new spheres 

per unit volume, and therefore,

χ =
τinject
τmerge

= ρ2K (α)
j

.

For each simulation condition, to characterize the distribution of 
sphere volumes at the time when the last new sphere was injected, we 
calculated the ratio of standard deviation to mean (also known as the 
coefficient of variation (CV)). For an exponential distribution, CV = 1, 
whereas a power-law-like distribution will have a larger CV. We then 
plotted CV against χ for each simulation condition (Fig. 5f) and found 
that all the conditions collapsed onto a single curve, matching our 
intuition that the ratio of timescales captured by χ governs the width 
of the final distribution of sphere volumes; we note that for very small 
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law cluster size distribution. a, HeLa cells were transduced with lentivirus to 
express eGFP-Htt-polyQ constructs of mutant Huntingtin exon 1 composed 
of N17, QN and C38 domains. Four days following transduction, cells infected 
with eGFP-Htt-Q31 had a diffuse GFP signal, whereas bright micrometre-scale 
puncta were evident in those infected with eGFP-Htt-Q73. b, Cells expressing 
eGFP-Htt-Q73 were imaged for 12 h. Aggregates were observed to merge on 
contact (inset). PolyQ growth was quantified over N = 5 cells imaged every 15 min. 
Subtracting the initial projected aggregate area and averaging revealed an 

increase in aggregate area over time at a per-cell rate of 0.04 ± 0.01 µm2 s–1 (error 
is expressed as a 95% confidence interval for a linear fit; p < 10–52 for an F test for 
comparing with a constant model). c, PolyQ aggregate cluster size distribution 
was calculated by averaging per-cell normalized cumulative distribution 
functions over cells (N = 114) between 4 and 6 days after lentiviral infection. The 
CCDF was fit to a power law, yielding CCDF(V) ≈ V–0.41±0.02 (error is expressed as 
a 95% confidence interval for linear fit; p < 10–25 for an F test for comparing with 
a constant model). The CCDF was also compared with the expectation for an 
exponential distribution (inset).
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values of χ, the CV is smaller because very few mergers occur and the 
distribution is restricted to almost entirely monomeric spheres.

We similarly anticipated that χ would control the evolution of 
the mean of sphere volume distribution in addition to its polydisper-
sity. Returning to the steady-injection simulations, we found that the 
mean volume increased close to exponentially with time (Fig. 5g); we, 
therefore, defined a characteristic timescale ξ for the growth of the 
mean by fitting the semi-log plot of mean sphere volume to a line. We 
then compared ξ with χ for the full set of parameters and found that 
ξ is indeed dependent on χ, with ξ decreasing as χ increases (Fig. 5h).

Taken together, we conclude from this theoretical analysis that for 
χ < 1, that is, when the timescale of a typical merger is greater than the 
time required to inject all the material into the system, the distribution 
remains narrow and close to an exponential since mergers are sparse 
and occur between random pairs. Moreover, the growth of the mean 
is slow on the timescale of injection because the injected monomers 
accumulate with time, accounting for an increasingly large fraction of 
the population (Extended Data Fig. 7). By contrast, for χ > 1, many more 
merger events occur during the injection process, giving older spheres 
more merger opportunities, mimicking the polyQ case, resulting in 
a broader, more power-law-like distribution. In this case, the mean 
grows quickly on the timescale of injection as monomers are efficiently 
consumed by larger spheres (Extended Data Fig. 7).

Preferential attachment generates power-law distributions
We next sought to investigate other mechanisms by which a preferen-
tial attachment effect might come into play. We considered that this 
effect can fundamentally be understood in the context of the simplest 
coagulation framework first analytically solved in another work40, 
where the relative rate at which spheres of particular volumes (V1, V2) 
with diffusion coefficients (D1, D2) collide can be described using a 
matrix known as a coagulation kernel K(V1, V2). For the diffusive spheres 
in our simulations, this is given by

K (V1,V2) = 4𝜋𝜋 (D1 + D2) (R1 + R2) ,

noting that Vi =
4
3

𝜋𝜋R3
i

 and that in the typical Stokes–Einstein case, 
Di ≈ 1/ri. We reasoned that in the fast-quench-and-coalescence case, all 
the simultaneously nucleating spheres were about the same size; for 
R1 = R2, K is constant as a function of sphere volume or radius and there-
fore mergers were ‘equal opportunity’, giving an exponential size dis-
tribution. However, in the slow-injection case, because the older 
spheres were much larger than the newly injected spheres, R1 ≫ R2 and 
therefore K ≈ R1/R2, meaning that small spheres tended to merge with 
large spheres, giving rise to a power-law distribution as observed in 
the slow-injection case.

We, therefore, sought to test whether artificially strengthening 
the collision bias towards larger spheres by directly manipulating the 
coagulation kernel could give rise to a power-law size distribution 

starting from the same narrow initial size distribution as in our previous 
fast-quench simulations, which produced exponential distributions. 
Indeed, the coagulation kernel is expected to vary with the conditions. 
It has been previously shown that in the case of the diffusion of indi-
vidual monomers in a Rouse polymer41, or, experimentally, in the case 
of condensates embedded in chromatin21, Di ≈ R–0.5, instead of Di ≈ R–1.0 
as prescribed by the Stokes–Einstein relation. It has furthermore been 
shown that in active suspensions with non-thermal forces that prob-
ably play a role in biological processes, the fluctuation–dissipation 
relation may not be obeyed, and thus, the Stokes–Einstein relation 
can be broken42.

Thus, we performed simulations for ordinary diffusion α = 1, but 
for each simulation, we set D = D0

Rγ
 for different values of γ, where γ = 1 

corresponds to the standard Stokes–Einstein dependence of the dif-
fusion coefficient on radius. For values of γ < 1, merger events become 
biased towards larger spheres since diffusion coefficients become less 
dependent on size, whereas larger spheres have larger collision radii. 
For γ < 0, spheres actually accelerate as they grow, further strengthen-
ing this bias (Fig. 6a).

We observed exponential distributions for γ > 1, consistent with 
our previous simulations, but as γ decreased below 1, we found progres-
sively more power-law-like distributions (Fig. 6b). We then empirically 
calculated the coagulation kernel, estimating a collision rate constant 
by weighting each collision event by the inverse of the number density 
of spheres of that size. To quantify the dependence of merger prob-
abilities on γ, we plotted the kernel diagonal against sphere size. For 
γ = 1, K was constant, consistent with analytical theory, but for γ = –2, 
we found that the diagonal increases with sphere size (Extended Data  
Fig. 8), suggesting that the merger probability increases with sphere 
size, resulting in preferential attachment. We also tested several sub-
diffusive exponents α and keeping γ = 1. In these instances, we found 
that the kernel diagonal remained constant as a function of radius 
for different values of α. This indicates that the distribution would 
be exponential regardless of the subdiffusive exponent. Indeed, this 
expectation is consistent with our simulations and our experimental 
observations in the Corelet system, where we observed exponential 
distributions for multiple values of α.

These results demonstrate the control of sphere size distribution 
by simply biasing the size dependence of the collision rates, independ-
ent of the rate of adding spheres to the system. We conclude that the 
scaling form of the size distribution generally reflects the strength of 
preferential attachment effect in growth kinetics, due to either material 
addition rate or size-dependent diffusion. Thus, quantifying the scaling 
form of condensate size distributions in live-cell experiments is suffi-
cient to characterize the strength of the preferential attachment effect.

Discussion
In this work, we elucidated the general principles underlying the size 
distributions of intracellular condensates, including those involved 

Fig. 5 | Simulations incorporating gradual material production demonstrate 
a power law. a, Simulations steadily introduced material at a rate of J spheres 
per unit time, starting with an empty cell, until 1,200 spheres were injected and 
a volume fraction of 4% was obtained. b, Cluster size distribution was calculated 
after the steady injection of 1,200 spheres and plotted (inset). Rapid injection 
produced an exponential distribution of sphere volumes, whereas slow injection 
gave a better fit to a power law with a slope of almost −0.5 based on the log–log 
plot of the CCDF (inset, dashed line). The error bars reflect the s.e.m. over 
20 simulation replicates for each J. c, Injection simulations were run with J = 0.01 
for varying values of diffusive exponent α. Plotting the CCDF demonstrates that 
for low α, an exponential distribution is obtained. The error bars reflect the s.e.m. 
over 20 replicates for each α. d, Mergers involving ‘monomeric’ spheres were 
analysed for J = 5.00 and J = 0.01 for α = 1. The distribution of sizes of spheres 
with which monomeric spheres merged and normalized by the mean sphere 

size at the moment of merger was calculated. The error bars reflect the s.e.m. 
over 960 simulation replicates per condition. e, Time of injection, normalized 
by simulation duration, for spheres with which monomeric spheres merged was 
calculated for 960 replicates. The injection time of a sphere is taken to be that of 
the earliest-injected sphere in its merger history. The error bars reflect the s.e.m. 
over 20 simulation replicates per J value. f, Coefficient of variation was calculated 
for each α and J and plotted against χ, the ratio of the injection to the merger 
timescale. The error bars reflect the s.e.m. g, Average sphere size was plotted as a 
function of time, normalized by the simulation duration for α = 1. The error bars 
reflect the s.e.m. (mostly smaller than the data points). h, For each condition, the 
growth timescale was calculated by linearly fitting the log of the average sphere 
size against normalized time to give ξ. Each ξ was compared with χ, the ratio of 
injection to merger timescales, for each α and J. The vertical error bars represent 
95% confidence interval of the linear fits for 20 replicates per condition.
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in vital biological processes. We described two drastically different, 
experimentally motivated mechanisms of condensate growth: a 
quench-then-coalesce model and a slow-nucleation model. We show 
that the size distributions of both can be accounted for by comparing 
the timescales of nucleation and coalescence.

Colloidal cluster size kinetics and cluster size distributions have 
previously been comprehensively studied13,14,43,44, leading to the 
description of two universality classes, identified as diffusion-limited 
cluster aggregation (DLA) or reaction-limited cluster aggregation 
(RLA). The limiting cases we identify here bear some similarity to DLA 
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and RLA: DLA describes the power-law growth of the mean cluster 
size13 and a decaying size distribution14, the latter of which we observe 
to be an exponential in our quench-then-coalesce mechanism. By 
contrast, in the slow-nucleation/slow-injection case14, we observe an 
approximately exponential growth of the mean13 and a power-law size 
distribution as in RLA. However, unlike in DLA and RLA, material in the 
cell is constantly produced and exists in a viscoelastic medium, which 
are not considerations in colloidal systems. Nevertheless, we have 
demonstrated that these biologically motivated mechanisms can lead 
to outcomes quantitatively analogous to DLA and RLA.

Indeed, based on our results, we can quantitatively describe the 
evolution of condensates that quench and then coalesce as consistent 
with dynamic scaling, which was first associated with DLA by other 
studies43,45. This mechanism of growth generically yields an expo-
nential distribution, independent of subdiffusive exponent or time, 
which implies that a single parameter—the average condensate volume 
〈V〉—defines the distribution. The average condensate volume has 
previously been shown to grow in time as 〈V(t)〉 ≈ V0(t/t0)α determined 
by the subdiffusive exponent α, following quench and nucleation to 
an average initial condensate volume V0 at some time t0 (ref. 14). We 
can, therefore, describe the distribution for the quench-then-coalesce 
mechanism simply as

f (V, t) = t0
V0tα

exp (− Vt0
V0tα

) .

We note that this is compatible with the self-similar dynamical 
scaling form proposed by other studies43,45, who proposed that the 
distribution f(s, t) of cluster size s at time t can universally be described 
as f (s, t) = tξψ ( s

tz
) for some function ψ (refs. 43,45).

Here we have shown that both native nuclear speckles and syn-
thetic condensates form via a quench-then-coalesce mechanism. The 
universality of this distribution, which fundamentally arises from 
coarsening dynamics, suggests that the cell may be able to dynami-
cally control the droplet size by manipulating the number of droplets 
formed and the total amount of available droplet material. Indeed, sev-
eral native organelles within the nucleus, including nuclear speckles9 
but also nucleoli24, Cajal bodies24, histone locus bodies, paraspeckles 

and promyelocytic leukaemia (PML) bodies, disassemble or scatter 
into the cytoplasm during mitosis19, probably due to a combination 
of dilution and post-translational modifications20,46, and then nucle-
ate and regrow in the resulting daughter nuclei. Our results show that 
a relatively narrow, exponentially decaying size distribution will be 
attained for simple regrowth driven by coalescence. Furthermore, the 
growth of the mean condensate size will be slowed if the motion of con-
densates is subdiffusive, as is common in cells21,47, which may allow for a 
quasi-static mean condensate size that only changes modestly over the 
biologically relevant timescales such as the cell cycle. Finally, although 
condensate nucleation often occurs at specific sites, for example, at 
defined genomic loci, these loci themselves also undergo subdiffusive 
Brownian motion34,48. In general, we propose that the maintenance of 
an exponential size distribution of condensates by slow coalescence 
may be conveniently implemented given the natural dynamics of the 
cell cycle, irrespective of the molecular details of the condensate.

By contrast, with the simple exponential distribution with a single 
mean size, power-law distributions are broad and scale free, indica-
tive, in this context, of a preferential attachment effect, where coa-
lescence events are biased towards larger, existing condensates. We 
demonstrated two possible causes of this effect. In the case of the 
neurodegeneration-associated mutant Htt-polyQ species, we observed 
that ongoing nucleation effectively gives older condensates more time 
to grow, resulting in preferential attachment and a power-law distribu-
tion. There is not yet a consensus on whether small oligomers or larger 
Htt-polyQ aggregates are to blame for accelerated disease progression 
or are a compensatory mechanism to slow cytotoxicity49,50. Regardless, 
the slow, steady production of aggregate generates a broad power-law 
distribution. We also suggest that preferential attachment is possible 
when diffusion is highly non-Stokesian. In general, the observation of 
power laws in condensates may be attributed to either or both these 
mechanisms or to others that have yet to be observed in cells, such as 
Ostwald ripening, which would effectively result in the merger of small 
and large condensates. However, the measurement of exponentials in 
nuclear bodies is consistent with the observation that Ostwald ripening 
is not a major contributing factor in the nucleus21,22.

The distribution of condensate sizes is also relevant to other cel-
lular pathologies, for example, in nucleolar size changes in diseases 
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scale to compare with a power law (inset). The error bars reflect the s.e.m. over 
20 simulation replicates per condition.
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such as progeria and cancer10–12. Here, too, it is unclear whether the 
observed increase in condensate size in these contexts is causative 
or purely correlative. This size increase may be indicative of altered 
coalescence or production dynamics, which might also be responsible 
for dysfunction. For instance, an exponential form with a larger mean 
might be indicative of an increased subdiffusive exponent, for example, 
due to reduced nuclear elasticity that previously has been associated 
with cancer, whereas a broadened distribution might be indicative of 
a preferential attachment process. The mechanical environment of 
the nucleus could have still more complex effects on the size distribu-
tion: local heterogeneities in the chromatin stiffness could lead to 
preferential nucleation in specific locations22,23, locally altering the size 
dependence of merger probabilities and hence changing the form of 
distribution. Moreover, the local pore size of chromatin could impose 
a size cutoff on the distribution.

Moreover, other factors, such as non-equilibrium activity and 
condensate-dependent reaction rates51, have been described as poten-
tial regulators of condensate size, probably inhibiting coalescence and 
growth. Some active processes could be captured by the framework 
described here: if active processes facilitate the coalescence of larger 
condensates, for example, by speeding their diffusion or making them 
superdiffusive, and/or suppress the coalescence of smaller conden-
sates, the distribution would become wider and more power-law like, 
whereas if the opposite were true, the distribution would become 
more exponential. For example, nucleoli are commonly observed to 
exhibit an unexpected power-law distribution in size, which probably 
results not only from coalescence dynamics but also from the strong 
influence of regulated steady-state production of ribosomal RNA. 
Similarly, droplets formed from associative polymers, for example, 
as considered in magic number52 or sticker-and-spacer53 models, may 
also reach metastable sizes as interaction surfaces become saturated, 
preventing growth by collisions54. Examining such size distributions 
under perturbations that modulate biological activity represents an 
exciting next frontier, which will yield newer insights into the coupling 
of classical materials’ coarsening dynamics and associated biological 
function and dysfunction.
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Methods
Plasmids
Here eGFP-polyQ74 was an adaptation of a gift from David Rubin-
sztein (Addgene plasmid #40262) with the insertion of N-terminal 
residues MATLEK as a part of the N17 domain and C-terminal 
residues PQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRP that com-
prise the proline-rich domain containing the C38 domain using 
primers as part of the In-Fusion cloning protocol (Takara). Also, 
eGFP-polyQ31 was adapted from eGFP-polyQ74 through the vari-
ability of Q-length PCR products amplified using CloneAmp HiFi 
PCR Premix (Takara). FM5-NPM1-mCh was generated as described  
elsewhere55.

To generate an sgRNA plasmid to target SRRM2, a guide RNA 
duplex was designed to insert EYFP at the beginning of the endogenous 
human SRRM2 coding sequence and then cloned downstream of the 
U6 promoter in the PX458 vector (Addgene Plasmid #48138; gift from 
Feng Zhang lab). The annealed oligonucleotides used to generate the 
final ‘pU6-SRRM2gRNA-CMV-FLAG-NLS-SpCas9-2A-mGFP’ plasmid 
were as follows:

Separately, a gene fragment containing upstream and down-
stream SRRM2 homology arms, flanking the full-length EYFP cod-
ing sequence, was synthesized (IDT) and then cloned into the pUC19 
vector, first digested with HindIII and BamHI. The following oligo-
nucleotides were used to create the final ‘pUC19-SRRM2 NonCode 
Homology-EYFP-SRRM2 Exon1 Homology’ plasmid:

Sanger sequencing (GENEWIZ) confirmed gene insertions in full 
for all the constructs.

Cell culture and cell-line generation
U2OS (a kind gift from Mark Groudine lab, Fred Hutchinson Cancer 
Research Center), HeLa CCL-2 (ATCC), HEK-D (as shown below) and 
Lenti-X 293T (Takara) cells were cultured in a growth medium con-
sisting of Dulbecco’s modified Eagle’s medium (GIBCO), 10% foetal 
bovine serum (Atlanta Biologicals) and 10 U ml–1 penicillin–strepto-
mycin (GIBCO), and incubated at 37 °C and 5% CO2 in a humidified  
incubator.

iPSC culture. Here iPSCs were obtained from the Allen Institute 
for Cell Science at Coriell Institute. The iPSC line AICS-0094-024 
(Mono-Allelic mEGFP-tagged SON WTC iPSC line) was used for 
our experiments. The colonies were expanded and maintained on 
Matrigel (Corning) in mTeSR Plus medium (Stem Cell Technolo-
gies). The cells were plated at 3,000–10,000 cells per square cen-
timetre to obtain ~75% confluency every 5–7 days. The cells were 
passaged using ReLeSR (Stem Cell Technologies) and split at a 
1:10–1:50 ratio. The mTeSR plus medium was supplemented with 
ROCK inhibitor Y-27632 (Selleck Chemicals) for a maximum of 24 h 
after cryopreservation or passaging. Then, iPSCs were cryopre-
served in mTeSR Plus medium supplemented with 30% KnockOut 
Serum Replacement (Gibco Life Technologies) and 10% dimethyl  
sulfoxide.

CRISPR-Cas9-based generation of HEK293 cells expressing 
eYFP-tagged SRRM2. Single HEK293 cells (kind gift from Marc Dia-
mond lab, UT Southwestern) were isolated by fluorescence-activated 
cell sorting. A clonal line termed HEK-D was selected for its relatively 
flat morphology and preferable imaging characteristics. The cell-line 
background was validated by short tandem repeat profiling (America 
Type Culture collection).

To generate the EYFP-tagged SRRM2 clonal line, HEK-D cells were 
plated in a 24-well dish to achieve 70% confluency the next day. Lipo-
fectamine 3000 (Thermo Fisher) was used to transfect the two plasmids 
at a one-to-one ratio, according to the manufacturer’s recommenda-
tion. The cells were amplified by successive passages to six-well dishes 
and then to 10 cm dishes. On approximately day 10 following transfec-
tion, the cells were trypsinized, pelleted and then resuspended in the 
flow cytometry buffer (Dulbecco’s phosphate-buffered saline with 
10% foetal bovine serum). Single eYFP-positive cells were sorted by 
fluorescence-activated cell sorting (Flow Cytometry Resource Facility, 
Princeton Department of Molecular Biology) into separate wells of 
96-well plates. The resulting colonies with the expected localization of 
eYFP signal to nuclear speckles (but not cytoplasm) were amplified, and 
a single clone with a relatively high fluorescence intensity was selected 
(eYFP-SRRM2 48 HEK D).

To validate, the cells were passaged into single wells of a 96-well 
plate containing either 200 µl of pCRISPRv2-SRRM2 gRNA lentivirus 
(pooled, six gRNAs designed according to the published recommen-
dations56) or 200 µl of pCRISPRv2-NonTarget gRNA lentivirus. After 
72 h, the confluent cells were washed, trypsinized and passaged at a 
1:8 dilution factor. After 96 h, the confluent cells were plated onto a 
fibronectin-coated, glass-bottom, 96-well plate (MatTek), and eYFP 
fluorescence was compared between the experimental (SRRM2 KO) and 
control (NonTarget) conditions, with confocal microscopy performed 
at seven days post-lentivirus transduction. The eYFP fluorescence was 
completely abrogated in the SRRM2 knockout (>90% of cells) condi-
tion, suggesting that eYFP was only integrated at the endogenous 
SRRM2 loci.

Next, whole-genome sequencing assessed the number of tagged 
copies in the hypotriploid HEK293 clone featuring three copies of 
chromosome 16, on which the SRRM2 gene is located. Two of the 
three copies contained the exogenous EYFP sequence between 
chr16:2,756,364 and chr16:2,756,365, corresponding to immediately 
before endogenous SRRM2’s start codon and after the expected 
upstream non-coding sequence. CRISPR-Cas9-mediated genome 
editing left single-nucleotide polymorphism encoding a synonymous 
codon (Gly6Gly) in SRRM2-tagged loci, otherwise unaltered from 
the parental sequence. The cells were then cultured and imaged as 
described elsewhere.

Lentiviral transduction
For Corelet, Htt-polyQ and NPM1 overexpression, lentivirus was 
produced by transfecting the transfer plasmids pCMV-dR8.91 and 
pMD2.G (mass ratio, 9:8:1) into Lenti-X cells grown to approximately 
80% confluency in six-well plates using FuGENE HD Transfection 
Reagent (Promega) as per manufacturer’s protocol. A total of 3 μg 
plasmid and 9 μl transfection reagent were delivered into each 
well. After 60–72 h, supernatant containing the viral particles was 
harvested and filtered with a 0.45 μm filter (Pall Life Sciences). The 
supernatant was immediately used for transduction or aliquoted 
and stored at −80 °C. The cells were seeded at 10% confluency in 
96-well plates and 20–200 μl filtered viral supernatant was added 
to the cells. Media containing the virus was replaced with fresh 
growth medium 24 h post-infection. The infected cells were imaged 
no earlier than 72 h after infection. For Htt-polyQ HeLa lines, the 
cells were transferred to a glass 96-well imaging plate coated with 
fibronectin 2 days following transduction and imaged 4–6 days 
post-transduction.

SRRM2 sgRNA 
Forward

5’ CACCGGGCCATGTACAACGGGATC 3’

SRRM2 sgRNA 
Reverse

5’ AAACGATCCCGTTGTACATGGCCC 3’

SRRM2 
homology 
forward

5’ TTGATGATAAGCTTcctttcttcaccactgagctccttcaaggg 3’

SRRM2 
homology 
reverse

5’ TTGATGATGGATCCccatagcctgcatgtccactcccagacgatgg 3’
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Microscopy
Images of Corelets, nucleoli and nuclear speckles were taken with a 
spinning-disc (Yokogawa CSU-X1) confocal microscope with a ×100 
oil-immersion Apo total internal reflection fluorescence objective 
(numerical aperture, 1.49) and an Andor DU-897 electron-multiplying 
charge-coupled device camera on a Nikon Eclipse Ti body. A 488 nm 
laser was used for imaging GFP and global activation, and a 561 nm 
laser was used for imaging mCherry. The imaging chamber was main-
tained at 37 °C and 5% CO2 (Okolab) with a 96-well plate adaptor. The Z 
stacks were taken every 300 nm for 15 μm using an ASI MS-2000 stage 
controller. For drug treatments, DRB (Sigma) or ActD (Sigma) were dis-
solved in dimethyl sulfoxide at 50 and 2 mg ml–1 stock concentrations, 
respectively, which were diluted in complete Dulbecco’s modified 
Eagle’s medium. The cells were treated by replacing the media and 
incubating for 4 h before imaging.

Images of Htt-polyQ were taken on a Nikon A1 laser scanning con-
focal microscope using a ×60 oil-immersion lens with a numerical 
aperture of 1.4. A 488 nm laser was used for imaging GFP. The imaging 
chamber was maintained at 37 °C and 5% CO2 (Okolab) with a 96-well 
plate adaptor. The Z stacks were taken every 420 nm for 15 μm using 
an ASI MS-2000 stage controller.

Image analysis
All the images were analysed in Fiji (ImageJ 1.52p)57 and MATLAB 2019b 
(Mathworks).

Corelets. Data were reanalysed from previous work21. Individual nuclei 
were cropped by hand and saved as .tif files, which were analysed in 
MATLAB. The droplets were segmented in the GFP channel by using 
Otsu’s algorithm to identify the nucleus in the first frame; an intensity 
threshold was defined as two standard deviations above the mean of 
the initial nuclear GFP intensity. This threshold was applied to all the 
subsequent frames to identify droplets; regions of 4 pixels and smaller 
were discarded. Then, regionprops was used to identify individual 
domains and calculate their area. The volumes were calculated by 
assuming perfect sphericity, based on previous work21; distributions 
were then calculated for each nucleus.

Nucleoli and nuclear speckles. Individual nuclei were cropped by 
hand and saved as .tif files, which were analysed in MATLAB. Maximum 
projects were generated and used to calculate a threshold for each 
nucleus and channel, which was set to the mean of the image plus two 
standard deviations. This threshold was applied in three dimensions 
to each Z stack; regionprops3 was used to calculate the volume of each 
condensate. Condensates below 20 voxels in size were discarded. CDFs 
were calculated for each nucleus, rescaled by mean volume and aver-
aged over the nuclei. The error was propagated as s.e.m.

PolyQ aggregates. Individual cells were cropped by hand and saved 
as .tif files, which were analysed in MATLAB. A frame of the maximum 
mean cytoplasmic brightness was selected to calculate a threshold 
for the cytoplasm, which was set to the mean of the image plus 2.5 
standard deviations. This threshold was applied in three dimensions 
to each Z stack; regionprops3 was used to calculate the volume of each 
aggregate. Aggregates below 16 voxels in size were discarded. CDFs 
were calculated for each nucleus, rescaled by mean volume and aver-
aged over the cellular cytoplasms. The error was propagated as s.e.m.

Simulations
Simulations were performed in MATLAB on the Della cluster (Princeton 
Research Computing). First, an initial configuration of spheres was 
generated in three dimensions with periodic boundary conditions, 
with initial sphere volumes drawn from a uniform distribution rang-
ing from 1 to 2 a.u. The box size was set based on the volume fraction 
(generally set at 5%). Overlapping spheres were then merged. Sphere 

merger was implemented by randomly selecting a pair of overlapping 
spheres and replacing them with one new sphere centred at the centre 
of mass of the pair. The size of the new sphere was determined by vol-
ume conservation of the original pair. This was iterated until no pairs of 
overlapping spheres remained (for ‘vanishing’ simulations employed 
as controls (Extended Data Figs. 3 and 4), all the spheres were set to a 
volume of 1 a.u. and maintained at a volume of 1 a.u. after merger, result-
ing in some spheres effectively ‘vanishing’). Then, for each sphere, a 
fractional Brownian motion trajectory with appropriate α was syn-
thesized (using the wfbm function from MATLAB’s wavelet toolbox, 
which utilizes the algorithm detailed elsewhere32) for the appropriate 
number of timesteps (generally 105). At each timepoint, each sphere 
proceeded one step along the synthesized trajectory, scaled such that 
D ≈ 1/Rγ. Spheres were merged as previously described. The merged 
spheres inherited the predetermined trajectory from one of their 
parent spheres (chosen arbitrarily), moving with the appropriate step 
size. This was repeated for the duration of the synthesized trajectories.

For injection simulations, the simulation box was initially empty; J 
spheres were initialized per timestep in randomly generated locations 
(that is, if J = 0.25, a sphere was initialized at every fourth timestep, 
whereas for J = 4.00, four spheres were initialized per timestep). Then, 
mergers and sphere diffusion proceeded as previously described 
before the next injection.

Size distributions were recorded for 20 replicates of each simula-
tion condition, binned and averaged before calculating the CCDFs. To 
calculate the collision rate constant, 960 (20 in the case of the ‘vanish-
ing’ control simulations) simulation replicates were performed; for 
each merger event, the sphere sizes of the merging pair and number 
of spheres of those sizes were recorded. Each merger event occurring 
between spheres of volume V1 and V2 was weighted by a factor of 1/
(f(V1)f(V2)), where f gives the number density of spheres of a particular 
size. Summing over weights of all the merger events in each simula-
tion replicate and then averaging over replicates gave an estimate of 
the coagulation kernel value after normalization by system size and 
simulation duration (Supplementary Note).

Data availability
Data, reagents and analysis code associated with this work are available 
from the corresponding authors upon reasonable request.

Code availability
Simulation code associated with this work is publicly available 
via GitHub at https://github.com/dswlee0519/Condensate_Size_ 
Distribution_Simulations.
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Extended Data Fig. 1 | Analysis of endogenous nuclear body size distributions 
upon transcriptional inhibition. a, HEK-D cells were endogenously tagged with 
SRRM-2 to label nuclear speckles and were lentivirally induced to express 
exogenous NPM1-mCh to label nucleoli. Cells were treated with either 50 μg/mL 
DRB for 4 hours, or with 10 μg/mL actinomycin-D for 2 hours. Example nuclei are 
shown for each condition and channel. b, Nuclear speckles demonstrated 
exponential distributions as seen by plotting the CCDF for all three drug 
conditions; ActD decreased speckle size to 1.05± 0.03 𝜇𝜇m3 (mean ± s.e.m., 
N = 43 nuclei) compared to nontreated control (∼ 1.16 𝜇𝜇m3), but still larger than 
DRB treated cells (∼ .92 𝜇𝜇m3). c, Unlike speckles, nucleoli strongly deviate from 

an exponential, exhibiting nonlinear behaviour in the semi-log CCDF. Nucleoli 
treated with transcriptional inhibitors were much smaller than the nontreated 
control, whose average volume was 11.6± 0.8 𝜇𝜇m3(N = 85). The average volume 
after treatment with DRB was 4.0± 0.2 𝜇𝜇m3 (N = 78), and 0.97± .02 𝜇𝜇m3 after 
treatment with ActD (N = 43). d, For nucleoli, binning and averaging 
demonstrates that a power-law size distribution with a slope slightly above −1 
(dashed reference line) is exhibited over a range of approximately 1-1.5 decades, 
consistent with literature16. As above, data is presented as mean (N = 85, 78 and 43 
for WT, DRB and ActD respectively) and error bars report s.e.m.
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Extended Data Fig. 2 | The Corelet system maintains a relatively constant 
amount of dense phase material and closely follows an exponential 
distribution. a, For 18 nuclei, the total volume of Corelet condensates in each 
nucleus was calculated and plotted over time (imaging every 3 seconds following 
the first 5 minutes of activation). b,To visualize overall changes in total 
condensate volume, in each of the 18 nuclei the total Corelet condensate volume 
was normalized by the time-averaged total condensate volume in that nucleus 
and then averaged over nuclei. Error bars reflect standard deviation. c, In the 

main text, it was noted that the mean in Fig. 2D is horizontally shifted from the 
expectation line; however, for an exponential distribution a shift in the mean can 
be attributed to a minimum experimentally detectable size, for example, due to 
the diffraction limit (see Supplementary Note). The mean condensate size was 
therefore adjusted by adding the minimum detectable volume, conservatively 
corresponding to a sphere of approximately 0.3 𝜇𝜇m in radius, and plotted with 
respect to the variance on a log-log plot for comparison to the expectation from 
an exponential distribution (dashed line).
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Extended Data Fig. 3 | Control simulations validate merger rates in 
coalescence simulations. a, To compare the merger rate of spheres in our 
simulation framework to that predicted by analytical theory, we first modified 
the simulation such that spheres do not change in size upon merger, effectively 
lowering the amount of total material in the system over time but giving a system 
with a single value of K instead of a function that would vary with the size of the 
merging spheres, for ease of comparison to theory. We performed this 
simulation beginning with a system of 1000 spheres each of volume 1; spheres 
overlapping in the initial condition were replaced by a single sphere, and the 
system was allowed to evolve according to the specified diffusive step size. Total 
volume was plotted after the initial condition was resolved. b, The theoretically 
predicted merger rate (blue line; see Supplementary Note) was plotted for a 
range of diffusive step sizes and compared to the empirically calculated 

quantities (black points), finding agreement over a limited range of step-size 
values. Error bars reflect standard error of the mean over 20 replicates. c, To 
determine the source of disagreement between theoretical prediction and 
apparent merger rate in b, we first performed a “pre-run” of 2×104 timesteps at a 
step size Δr = 0.03 starting with an initial condition identical to that in a for all 
conditions before collecting data, effectively “diluting” the system by nearly 
5-fold. d, The collision rate constant was calculated for a range of step-size values 
following the pre-run protocol. Data represent mean and error bars are s.e.m. We 
found that this pre-run protocol gave a closer agreement with the theoretical 
prediction over a larger range of values, suggesting that the disagreement seen in 
b is merely due to the initial condition having fewer than predicted mergers, 
rather than the implementation of the dynamics themselves.
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Extended Data Fig. 4 | PolyQ dynamics reveal a large increase in aggregate 
material over time. a, Total PolyQ protein aggresome area was plotted over 
time for each of five cells, imaging every 15 minutes for 12 hours. b, To assess the 
overall change in aggregate material, the aggregate area normalized by the time 

averaged aggregate area in each cell was averaged over cells and plotted; error 
bars indicate standard deviation. The amount of aggregate material increases on 
average about twofold from the beginning to the end of the time course.

http://www.nature.com/naturephysics
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Extended Data Fig. 5 | PolyQ size distributions compared to slow injection 
simulations. a, Probability distribution functions for both the polyQ 
experimental data and the slow injection simulation ( J = 0.01, α = 1) were 
calculated over 114 cells or 20 simulation replicates, respectively, and rescaled by 
the per-cell or per-simulation mean condensate size before averaging. The data 
was plotted (error bars are standard error of the mean) and fitted to power-law 
models with f (V) ∼ Vk (dashed lines, uncertainty is reported as 95% confidence 

interval of the linear fit). b, The CCDF was calculated for both simulation and 
experimental data sets once again, plotted (error bars reflect standard error of 
the mean) and fit to a power-law model such that CCDF ∼ Vk̃. Error is reported as 
95% confidence interval of the fit. In the case of the simulation data, the fit was 
performed over the linear regime of the CCDF, from 10−1 < V

V
< 100, since the 

CCDF fell off due to finite size effects.
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Extended Data Fig. 6 | Empirical calculation of collision rate constant 
dependence on subdiffusive coefficient. The dependence of the collision rate 
constant K on the diffusive exponent α was empirically calculated by running 20 
replicates of simulations each initially containing 1000 spheres, which did not 
change size upon merger (that is, identical to Supplementary Fig. S2a), with step 

size Δr = .05 and varying α from 0.1 to 1. K was calculated for each condition by 
taking the merger probability weighted by the sphere number density. Error bar 
reflects standard error of the mean over replicates. K was well fit by a linear model 
(R2 = 0.993) in semi-log, that is, log (K) ∼ α (blue line), which relation was used to 
calculate the ratio χ of injection to merger timescales (Fig. 5).
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Extended Data Fig. 7 | Monomer concentration reflects the preferential 
attachment effect. Monomeric sphere concentrations (that is, number of 
spheres which had been injected and not yet merged with any other sphere) were 
calculated for each injection rate J with α = 1. For slow injection rates, the 

monomer concentration decreased at long times, while it continued to increase 
for fast injection rates as monomers accumulated more quickly than merger 
events occurred. For intermediate injection rates, where χ ∼ 1, the monomer 
concentration approximately reached a plateau.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-022-01917-0

Extended Data Fig. 8 | Calculating the coagulation kernel allows for 
quantification of the preferential attachment effect. a, To characterize the 
simulated merger dynamics, we first plotted the incidence of individual merger 
events between spheres of particular volumes for an example system (5000 
randomly chosen events were plotted for visual clarity). b, To describe the 
apparent strength of the preferential attachment effect, we weighted each 
merger event by the number density of the sphere sizes involved in the merger, 
and averaged over each possible pair of sizes, giving an estimate of the collision 
rate constant or coagulation kernel K. c, The coagulation kernel diagonal was 

computed for 960 replicates of the fast-quench-and-coalescence simulation with 
1000 spheres and plotted against theoretical expectation for ordinary diffusion 
(magenta dashed line), demonstrating that for all subdiffusive conditions, there 
is no strong preferential attachment effect, as expected. d, The diagonal of the 
kernel was calculated and plotted for simulations with γ = 1 and γ = −2 for 1000 
replicates. Both conditions were compared to and agreed well with theoretical 
expectation, that is, K (V) = 16πΔr2V

1−γ
3 , where Δr is the diffusive step size 

(dashed lines). Error bars are s.e.m.

http://www.nature.com/naturephysics

	Size distributions of intracellular condensates reflect competition between coalescence and nucleation

	Results

	Nuclear condensates exemplify exponential size distributions

	Exponential distributions are independent of subdiffusion

	Slow polyQ nucleation results in a power-law distribution

	Injection–collision rate ratio controls size distributions

	Preferential attachment generates power-law distributions


	Discussion

	Online content

	Fig. 1 Endogenous nuclear speckles display exponential distributions before and after transcriptional inhibition.
	Fig. 2 Synthetic nuclear condensates display exponential distributions as they coarsen.
	Fig. 3 Monte Carlo simulations of subdiffusive coalescence also produce exponential distributions.
	Fig. 4 PolyQ aggregates exhibit slow-nucleation dynamics and a power-law cluster size distribution.
	Fig. 5 Simulations incorporating gradual material production demonstrate a power law.
	Fig. 6 Preferential attachment effect results in power-law-like size distributions.
	Extended Data Fig. 1 Analysis of endogenous nuclear body size distributions upon transcriptional inhibition.
	Extended Data Fig. 2 The Corelet system maintains a relatively constant amount of dense phase material and closely follows an exponential distribution.
	Extended Data Fig. 3 Control simulations validate merger rates in coalescence simulations.
	Extended Data Fig. 4 PolyQ dynamics reveal a large increase in aggregate material over time.
	Extended Data Fig. 5 PolyQ size distributions compared to slow injection simulations.
	Extended Data Fig. 6 Empirical calculation of collision rate constant dependence on subdiffusive coefficient.
	Extended Data Fig. 7 Monomer concentration reflects the preferential attachment effect.
	Extended Data Fig. 8 Calculating the coagulation kernel allows for quantification of the preferential attachment effect.




