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Abstract 

Phase separation of biomolecules into condensates has emerged as a ubiquitous mechanism for 
intracellular organization and impacts many intracellular processes, including reaction pathways through 
clustering of enzymes and their intermediates. Precise and rapid spatiotemporal control of reactions by 
condensates requires tuning of their sizes. However, the physical processes that govern the distribution of 
condensate sizes remain unclear. Here, we utilize a combination of synthetic and native condensates to 
probe the underlying physical mechanisms determining condensate size. We find that both native nuclear 
speckles and FUS condensates formed with the synthetic Corelet system obey an exponential size 
distribution, which can be recapitulated in Monte Carlo simulations of fast nucleation followed by 
coalescence. By contrast, pathological aggregation of cytoplasmic Huntingtin polyQ protein exhibits a 
power-law size distribution, with an exponent of �1.41 � 0.02. These distinct behaviors reflect the 
relative importance of nucleation and coalescence kinetics: introducing continuous condensate nucleation 
into the Monte Carlo coarsening simulations gives rise to polyQ-like power-law behavior. We 
demonstrate that the emergence of power-law distributions under continuous nucleation reflects a “rich 
get richer” effect, whose extent may play a general role in the determination of condensate size 
distributions.  

Introduction 

Condensates of biological macromolecules play critical roles in many biological processes, 
including ribosome synthesis1, DNA organization2 and repair3, and stress responses4,5. In the context of 
metabolism, co-clustering enzymes into condensates can increase the efficiency of reactions by spatially 
coordinating intermediates6, but only for a restricted range of sizes. Similarly, large deviations from 
typical condensate sizes, which have been described for many nuclear condensates, including nucleoli1, 
Cajal bodies7, and nuclear speckles8, are associated with dysfunction and pathology. For instance, 
increased nucleolar size is associated with increased ribosome biogenesis9 and has been associated with 
both cancer10 and Hutchinson-Gilford progeria11. Moreover, condensates are strongly linked to 
pathological aggregation diseases such as Alzheimer’s and ALS. In these cases, there are many remaining 
questions about how large condensates might nucleate irreversible aggregates, and whether large 
aggregates are themselves pathological, or merely end-stage outcomes from smaller pathological 
assemblies. 

In non-living, colloidal systems,  the kinetics of coarsening processes are well-known to be 
inherently linked with and to generally determine cluster-size distributions12–15. By contrast, while 
biomolecular condensates have been observed in living cells for many years, their size distributions and 
coarsening dynamics have rarely been examined in detail. Among the few previously studied examples 
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are nucleoli in Xenopus laevis and in cultured human cells, which have been shown to have power-law 
size distributions1,16. Interestingly, such broad, scale-free size distributions are at odds with the suggestion 
that endogenous condensates have well-defined, functionally regulated sizes.  However, in more typical 
rapidly dividing mammalian cells, nuclear bodies, such as nucleoli and speckles8,17, tend to appear 
following mitosis and coalesce18, but then maintain relatively stable sizes until the next cell division, 
likely in part due to strong mechanical constraints from chromatin19–22.  This picture is consistent with 
other recent work that has taken advantage of synthetic nuclear condensates, which form quickly23 but 
grow and coalesce slowly due to their constrained, subdiffusive motion20.  

In some pathological contexts, cytoplasmic aggregates known as inclusion bodies or aggresomes 
are continuously produced, potentially providing a continually changing size distribution. For example, in 
the case of Huntington’s disease, the progressive misfolding of mutant Huntingtin protein exhibiting 
abnormally large stretches of polyglutamine or “polyQ” repeats leads to steady accumulation of material 
into irreversible aggregates. Although generally more solid-like than most liquid-like physiological 
condensates, pathological aggregates can also generally move throughout the cell, and stick or fuse upon 
collision, forming progressively larger structures that may even span the entire cell24 and are associated 
with neuronal dysfunction25 and cytotoxicity. How such steady accumulation of aggregating material is 
similar to or differs from the coarsening dynamics of physiological condensates, and the physical and 
biological principles that underlie such phenomena more generally, remain poorly understood.  

Here, we combine live-cell experiments and simulations to elucidate general principles linking 
condensate growth dynamics and size distributions. We demonstrate that endogenous nuclear speckles, 
which exhibit fast nucleation followed by gradual coalescence, yield an exponential size distribution, 
which can also be recapitulated in an engineered intracellular phase-separating system. By contrast, 
cytoplasmic Huntington aggregates show that continuous material production instead leads to a power-
law distribution. We describe the differences that account for the scaling forms of the condensate size 
distribution in terms of a “rich get richer” effect, wherein growth by merger is biased towards larger 
condensates. These findings may provide insight into how cells biophysically regulate the size and 
number of condensates.  

Results 

Endogenous and synthetic nuclear condensates demonstrate an exponential size distribution 

We first sought to determine the distribution of the sizes of an endogenous nuclear condensate, 
the nuclear speckle. Previous work suggested that speckles form quickly after mitosis and grow by 
coalescence8, thus acting as a model for the dynamics of a typical condensate. We imaged stem cells 
(iPSCs) in which SON, a known marker of speckles26, was endogenously tagged with GFP (Fig. 1a), 
since overexpressing condensate constituents can alter condensate size27. We then segmented the speckles 
in 3D and quantified the probability density �	
, �
 of condensate volume 
 at time �. Because the size 
distribution is highly sensitive to binning and cell-to-cell variation, we first considered the cumulative 
distribution function (CDF) of condensate sizes for each cell:  

�	
, �
 � � �	
, �
�
�

�
, 

and rescaled these distributions by each cell’s average condensate volume.  We averaged over the 
rescaled distributions to account for cell-to-cell variation and finite sampling, and plotted the 
complementary cumulative distribution (CCDF), CCDF � 1 � �. We found that the nuclear speckle 
CCDF as a function of condensate volume 
 is linear on a semi-log plot for all timepoints, implying that 
these condensates are well-described by an exponentially decaying size distribution (dashed line, Fig. 1b)  

To further interrogate this behavior in a more tractable cell line, we utilized a monoclonal 
HEK293-derived (“HEK-D”; see Methods) cell line with eYFP-tagged SRRM2, another speckle marker 
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(Fig. 1c)26, and expressing mCh-tagged NPM1 to mark nucleoli. We first verified that an exponential was 
still observed in this cell line (Fig. 1e, dashed black line). Previous work8 suggested that treatment with 
the transcriptional inhibitor 5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) accelerates long-
distance collisions between speckles, facilitating fusion. We asked whether this increase in dynamics 
would alter the form of the size distribution. Following 4 hours of treatment with DRB, we find an 
increase in mean speckle size from 0.92 � 0.02 µm� (mean � standard error of the mean over 85 cells) in 
the nontreated control to 1.16 � 0.03 µm� (78 cells), consistent with the literature. However, despite this 
average size increase, both distributions were exponential (Fig. 1e). Similar results were seen using 
Actinomycin D (Fig. S1). By contrast, in nucleoli, we observed a power-law distribution with a slope of 
approximately -1 (Fig. S1)16, and a marked decrease in nucleolar size after both ActD and DRB 
treatment28, both consistent with previous work.  

To examine the origin of these distributions in an even more experimentally tractable platform, 
we utilized the Corelet optogenetic system whose nucleation and coarsening dynamics have been well-
characterized20,23,29. Briefly, the Corelet system consists of two components (Fig. 2a): a 24-mer ferritin 
core whose monomers are fused to a green fluorescent protein (GFP), and an iLiD (improved light-
induced dimer) domain plus a protein, here the intrinsically disordered region (IDR) of FUS, fused to an 
mCherry (mCh) fluorophore and an sspB domain (stringent starvation protein B). Upon blue light 
activation, the iLiD and sspB heterodimerize, resulting in oligomerization of the FUS IDR, which drives 
phase separation within seconds after light activation29. Using this biomimetic system expressed in human 
osteosarcoma (U2OS) cells, we activated and imaged for 105 minutes20; we observed that the CCDF is 
again consistent with an exponentially decaying size distribution. By examining the distribution as a 
function of time since initiation of condensate formation with light, we find that for a particular cell, the 
CCDF retains the linear shape on a semi-log plot, but changes slope as the condensates coarsen and the 
average condensate size grows (Fig. 2b). To confirm that this behavior was consistent across cells and 
timepoints, we rescaled each CCDF by mean condensate size �
	�
� for each cell and time, revealing that 
these distributions obeyed the same scaling, all collapsing onto a line with slope -1 (dashed black line) 
corresponding to an exponential distribution (Fig. 2c). Finally, to verify the Corelet exponential cluster-
size distribution, we also calculated and compared the volume-weighted or “particle-centric” mean �
�� 
and variance ��

� for each nucleus and timepoint, which should be less noisy but obey the same relation 
as the cluster-centric distribution for a system with fixed density clusters (e.g., LLPS). We note that the 
points fall along the �
��

� � ��
� line expected for an exponential distribution, with a slight horizontal 

shift which can be explained by the bias in the mean arising from a minimum detection size 
(Supplementary Note; Fig. S2).  

Monte Carlo simulations recapitulate exponential distributions, regardless of subdiffusion 

To quantitatively understand the underlying basis for the exponential size distribution of 
condensates,  we developed Monte Carlo simulations to replicate and manipulate the coagulation 
dynamics.  We hypothesized that, in general, a fast quench, wherein many small condensates nucleate 
nearly simultaneously, followed by growth via slow coagulation, would produce an exponential 
distribution. In our simulations, we first generated � spheres whose initial volumes were sampled from a 
uniform distribution in the range [1,2], which were randomly placed in a cubic box of side length �. 
Spheres whose initial positions overlapped were merged by replacing them with a larger sphere centered 
at their center of mass and conserving volume (Fig. 3a). The spheres were then allowed to move 
according to fractional Brownian motion with an exponent  , i.e., �!�� � 2�"#�   for displacement !$, 
dimension �, diffusion coefficient ",  and time lag #. Thus, the simulations could be tuned to mimic 
subdiffusive 	 % 1
 or diffusive  	 � 1
 behavior, a physiologically relevant parameter, considering 
the apparent ubiquity of subdiffusion in cells20,30,31. In the simulations, spheres diffused according to the 
specified dynamics and were merged upon contact. We found that the size-dependent rate of mergers 
agreed with predictions from coagulation theory (Fig. S3)32.  
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We ran replicates over a range of (sub)diffusive conditions and calculated the distribution of 
volumes after a fixed time. Plotting the sphere-size distribution and rescaling by the average sphere 
volume as in the analysis of the experimental data, we observed exponential distributions under all 
conditions (Fig. 3b). Thus, in simulations with a wide range of diffusive exponents and in experiments 
with various synthetic and endogenous condensates, we observed exponential distributions. 

Huntingtin polyQ aggregates exemplify the slow production regime and have a power-law 
condensate-size distribution 

Our findings thus far suggest that rapid nucleation of small condensates followed by slower 
coarsening due to coalescence of condensates generically results in an exponential distribution. To further 
elucidate how the relative timescales of nucleation and coagulation affect the scaling of the condensate-
size distribution, we next considered a contrasting system characterized by continuous, sustained 
nucleation of new small condensates. Specifically, we utilized the Huntingtin polyQ exon 1 (Htt-polyQ) 
system, which, unlike the above systems, exhibits a slow and steady increase in total aggregate material 
with time. Exogenous eGFP-Htt-polyQ protein was lentivirally expressed in HeLa cells to induce 
aggregate formation. Consistent with previous work33, eGFP-Htt-Q31 did not form aggregates, but eGFP-
Htt-Q73 formed large aggregates in perinuclear regions of the cytoplasm within 4 days following 
infection (Fig. 4a). These aggregates were observed to nucleate over the span of hours and merge upon 
contact (Fig. 4b). To quantify production dynamics, we measured the total projected area of aggregated 
material as a function of time, finding a roughly constant average production rate of approximately 
0.04 � .01µm�/s (Fig. 4b), which corresponds to an increase of 2.28 � 0.24 fold over the observed 
interval (Fig. S4); this contrasts with the Corelet system, which generally remained stable in total 
condensate volume, following an initial nucleation period (Fig. S2 a,b).  

To examine the effect of these contrasting kinetics, we quantified the size distributions of polyQ 
aggregates. To calculate the per-cell distribution and avoid binning artifacts, a CDF was calculated for 
each cell and averaged over cells. The resulting CCDF was well-fit by a power law with exponent 
�0.41 � 0.03, corresponding to an exponent of �1.41 for the PDF (Fig 4C); the CCDF was poorly-fit by 
an exponential (inset).  

Slow injection results in a broad condensate-size distribution 

We hypothesized that the broad power-law distribution observed in the polyQ system is due to 
the similar timescales for the appearance of new aggregates and mergers of existing aggregates. To test 
this idea, we returned to our Monte Carlo simulations to model the slow nucleation of the polyQ system. 
Specifically, we modified the simulations such that spheres appear at a fixed injection rate of ) spheres 
per timestep, rather than all at once at � � 0 (Fig. 5a). For a range of ) values, we ran simulations until a 
fixed equal number of spheres were injected, and then calculated the CCDFs (Fig. 5b). For relatively high 
values of ) () * 0.1), the resulting distributions were approximately exponential, but for low values of ) 
() % 0.1), the distributions were more power law-like (Fig. 5b), consistent with previous work1,34. In 
particular, we note that the ) � .01 case produces a power law over two decades with an exponent 
of�1.51 � 0.13, very close to the power-law exponent observed in our polyQ experiments.  This 
suggests that the slow addition of new material drives the system towards a broader distribution of sizes, 
associated with a power-law distribution with exponent �1.5.  

Given that our simulations yielded either an exponential or a power-law distribution simply by 
changing the rate of injection of new material, this provided an opportunity to track down the underlying 
mechanism responsible for these qualitatively different outcomes in silico. Since the size distribution 
depends on which mergers occur, we mapped the collision events of the respective systems to obtain the 
network structure of mergers. To visualize this merger network, we depicted each sphere as a unique node 
in a graph representation, drawing an edge between it and another sphere to represent a merger event at 
some point in the simulation (Fig. 5c). In the high ) case, we observed many isolated sets of connected 
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nodes, consistent with the exponential size distribution, while for low ), the network is highly connected, 
yielding fewer total spheres but with a much broader range of final volumes.  

For low ), the merger network structure is reminiscent of preferential attachment phenomena, 
which have been shown in a wide variety of contexts to generate power-law distributions35–37. In the case 
of low ), the first spheres to be injected have more opportunities to merge and consume smaller spheres, 
resulting in preferential attachment onto larger spheres or a “rich get richer” effect. By contrast, in the 
case of high ), the sphere merger probability is approximately independent of size.  

We verified this quantitatively by analyzing mergers in the ) � 5 and ) � .01 cases. We 
considered mergers involving “monomeric” spheres, i.e., spheres which had been injected and not yet 
undergone any mergers. We recorded the size of the spheres with which they merged, normalized by the 
mean sphere size at the moment of merger, finding that for ) � 5, monomeric spheres typically merged 
with spheres close to the mean sphere size, while for ) � .01, the distribution of merger partners was 
much wider, reflecting the bias of collisions towards spheres much larger than the mean (Fig. 5d). 
Furthermore, over the course of the simulations, we calculated the age of the spheres with which 
monomer spheres collided, normalizing by the total duration of the simulation, finding that merger 
fraction increases linearly with sphere age in the fast injection case, as would be expected if merger 
probability is size-independent. However, in the slow injection case, the merger fraction was even more 
strongly dependent on the age of the merger partner, with approximately 80% of monomeric spheres 
merging with a sphere that had been injected in the first 25% of the simulation (Fig. 5e), matching our 
intuition that mergers were heavily biased towards “older” spheres.  

We reasoned that if decreasing ) results in a broader distribution because injection becomes 
slower relative to merger, then conversely, slowing down the merger rate should similarly recover an 
exponential distribution, since having a modest head start on merger opportunities would not be 
consequential if the merger time is very long. Therefore, we held ) fixed at a value of 0.01 and varied the 
subdiffusive exponent in our simulations. We found that decreasing the subdiffusive exponent and thus 
slowing down mergers indeed recovered an exponential distribution (Fig. 5f).  

 To characterize the crossover between an exponential and a power-law size distribution, we ran 
simulations varying both   and ). To determine which process was kinetically limiting, we computed and 
compared the merger timescale #��	
� to the injection timescale #��
��� based on input parameters. The 
merger timescale #��	
� is given by the time required to close the distance between spheres by 

(sub)diffusion, i.e., #��	
� � �

���
, where , is total number of injected spheres per system volume, and -� 

is the collision rate constant, whose dependence   is nontrivial and was calculated empirically in 
simulation (Fig. S4).  The injection timescale #��
��� is the time required to inject all the spheres into the 

system, i.e., #��	
� � �����

�
. We then define the dimensionless number .: 

. � #��
���

#��	
�

� ,�-�

0 , 

where 0 � �

����
 is the rate of injection of new spheres per unit volume. For each simulation condition, to 

characterize the distribution of sphere volumes at the time when the last new sphere was injected, we 
calculated the ratio of the standard deviation to the mean, aka the coefficient of variation (CV). For an 
exponential distribution, CV � 1, while a power law-like distribution will have a larger CV. We then 
plotted . against the CV for each simulation condition (Fig. 5g) and found that all conditions collapsed 
onto a single curve, matching our intuition that the ratio of timescales captured by . governs the final 
distribution. For . % 1, the timescale of a typical merger is greater than the time required to inject all the 
material into the system, so the distribution remains narrow and close to an exponential, since mergers are 
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sparse and occur between random pairs. However, for . * 1, many merger events will occur during the 
injection process, giving “older” spheres more merger opportunities, mimicking the polyQ case, 
facilitating the “rich get richer” effect, and resulting in a broader, more power law-like distribution.  

The “rich get richer” effect generates power-law distributions 

The “rich get richer” effect can also be understood in the context of the simplest coagulation 
framework first analytically solved by Smoluchowski38, wherein the relative rate at which spheres of 
particular volumes 	
�, 
�
 with diffusion coefficients  	"�, "�
, collide can be described using a matrix 
known as a coagulation kernel -	
�, 
�
. For the diffusive spheres in our simulations, this is given by: 

-	
�, 
�
 � 42	"� 3 "�
	!� 3 !�
, 

noting that 
� � �

�
2!�

� and that in the typical Stokes-Einstein case, "� 4 1/!�  . We reasoned that in the 

fast quench and coalescence case, the simultaneously nucleating spheres were all of about the same size; 
for !� � !� , - is constant, and therefore the mergers were “equal opportunity”, giving an exponential size 
distribution. However, in the slow injection case, because the “older” spheres were much larger than 
newly injected spheres, !� ** !�, and therefore -~!�/!�, meaning that small spheres tended to merge 
with large spheres, allowing the “rich to get richer”, giving rise to a power law as observed in the slow 
injection case.  

 We therefore sought to test whether artificially strengthening the “rich get richer” effect by 
directly manipulating the kernel could give rise to a power-law size distribution starting from the same 
narrow initial size distribution as in our previous fast quench simulations, which had produced 
exponential distributions. Specifically, we performed simulations for ordinary diffusion  � 1, but for 

each simulation we set " � ��

��
 for different values of 6, where 6 � 1 corresponds to the standard Stokes-

Einstein dependence of the diffusion coefficient on radius. For values of 6 % 1, merger events become 
biased towards larger spheres, and for 6 % 0, spheres actually accelerate as they grow, strongly promoting 
preferential attachment (Fig. 6a).  

We observed exponential distributions for 6 * 1, consistent with the previous simulations, but as 
6 decreased below 1, we found progressively more power-law-like distributions (Fig. 6b). We then 
empirically calculated the coagulation kernel, estimating a collision rate constant by weighting each 
collision event by the number density of spheres of that size. We visualized the strength of the preferential 
attachment effect by plotting the value of the kernel diagonal against sphere size, verifying a far stronger 
preferential attachment effect in the 6 � �2  simulations compared to the 6 � 1 case (Fig. S6). We also 
tested several subdiffusive exponents with 6 � 1, finding that the kernel diagonal remained constant as a 
function of radius for different subdiffusive exponents, consistent with the exponential distributions 
experimentally observed in the Corelet system.  Thus, we were able to control the sphere-size distribution 
by mediating the strength of the “rich get richer” effect, independent of the rate of adding spheres to the 
system. We conclude that the scaling form of the size distribution generally reflects the strength of 
preferential attachment in the growth kinetics, whether due to material addition rate or to size-dependent 
diffusion, thus simply accounting for the scaling form of condensate size distributions in live-cell 
experiments in multiple systems.  

Discussion 

In this work, we elucidated general principles underlying size distributions of intracellular 
condensates. We described two drastically different, experimentally motivated mechanisms of condensate 
growth: a quench-then-coalesce model, and a slow-nucleation model. We show that the size distributions 
of both can be accounted for by comparing the timescales of nucleation and coalescence, illuminating 
universal physical principles underlying vital biological processes.  
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The quench-then-coalesce mechanism of growth generically yields an exponential distribution, 
independent of subdiffusive exponent or time, which implies that a single parameter, i.e. the average 
condensate volume �
7, defines the distribution. The average condensate volume has previously been 

shown to grow in time as �
	�
7 � ����

��
 determined by the subdiffusive exponent  ,  following quench 

and nucleation to an average initial condensate volume 
� at some time ��
12. We can therefore describe 

the distribution for the quench-then-coalesce mechanism simply as:   

�	
, �
 � ��


���
exp ;� 
��


���
<.  

We note that this form is compatible with the self-similar dynamical scaling proposed by Vicsek and 
Family, who suggested in the context of diffusion-limited cluster aggregation that the distribution �	=, �
 

of cluster size = at time �, can universally be described as �	=, �
 � ��> ? �

��
@ for some function >39,40.  

Here, we have shown that both native nuclear speckles and synthetic condensates form via a 
quench-then-coalesce mechanism, which may present a common mechanism for size control of 
condensates. Indeed, several native organelles within the nucleus, including nuclear speckles8 but also 
nucleoli23, Cajal bodies23, histone locus bodies, paraspeckles, and PML bodies, all disassemble or scatter 
into the cytoplasm during mitosis18, likely due to a combination of dilution and post–translational 
modifications19,41, and then nucleate and regrow in the resulting daughter nuclei. Our results show that a 
relatively narrow, exponentially decaying size distribution will be attained for simple regrowth driven by 
coalescence. Furthermore, the growth of the mean condensate size will be slowed if the motion of 
condensates is subdiffusive, as is common in cells20,42, which may allow for the approximate maintenance 
of a characteristic mean condensate size over the duration of the cell cycle.  Finally, while condensate 
nucleation often occurs at specific sites, e.g. at defined genomic loci, these loci themselves also undergo 
subdiffusive Brownian motion31,43. In general, we propose that the maintenance of an exponential size 
distribution of condensates by slow coalescence may be conveniently implemented given the natural 
dynamics of the cell cycle, irrespective of the molecular details of the condensate.  

By contrast with the simple exponential distribution with a single mean size, power-law 
distributions are broad and scale-free, indicative in this context of a “rich get richer”, or preferential 
attachment effect, wherein coalescence events are biased towards larger, existing condensates. We 
demonstrated two possible causes of a preferential attachment phenomenon. In the case of the 
neurodegeneration-associated mutant Htt-polyQ species, we observed that ongoing nucleation effectively 
gives older condensates more time to grow, resulting in preferential attachment and a power-law 
distribution. There is not yet a consensus on whether small oligomers or larger Htt-PolyQ aggregates are 
to blame for accelerated disease progression or are a compensatory mechanism to slow cytotoxicity44,45. 
Regardless, the slow, steady production of aggregate generates a broad power-law distribution. We also 
suggest that a “rich get richer” effect is possible when diffusion is highly non-Stokesian. In general, the 
observation of power laws in condensates may be attributed to either or both of these mechanisms, or to 
others which have yet to be observed in cells, such as Ostwald ripening, which would effectively result in 
the merger of small and large condensates.  

The distribution of condensate sizes is also relevant to other cellular pathologies, e.g., in nucleolar 
size changes in diseases such as progeria and cancer9–11. Here too, it is unclear whether the observed 
increase in condensate size in these contexts is causative or purely correlative. This may be indicative of 
altered coalescence or production dynamics, which might also be responsible for dysfunction. For 
instance, an exponential form with a larger mean might be indicative of an increased subdiffusive 
exponent, e.g. due to reduced nuclear elasticity which previously has been associated with cancer, while a 
broadened distribution would be indicative of a “rich-get-richer” effect. However, still other factors, such 
as nonequilibrium activity and condensate-dependent reaction rates46 have been described as potential 
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regulators of condensate size. For example, nucleoli are commonly observed to exhibit an unexpected 
power-law distribution in size, which likely results from not only coalescence dynamics, but also from the 
strong influence of regulated steady-state production of ribosomal RNA. Examining such size 
distributions under perturbations that modulate biological activity represents an exciting next frontier, 
which will yield new insights into the coupling of classical materials coarsening dynamics and associated 
biological function and dysfunction.  

Methods 

Plasmids 

eGFP-PolyQ74 was an adaptation of a gift from David Rubinsztein (Addgene plasmid #40262) with 
insertion of N-terminal residues MATLEK a part of the N17 domain and C-terminal residues 
PQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRP which comprise the PR (proline-rich) domain 
containing the C38 domain using primers as a part of In-Fusion cloning protocol (Takara). eGFP-
PolyQ31 was adapted from eGFP-PolyQ74 through the variability of Q-length PCR products amplified 
using CloneAmp HiFi PCR Premix (Takara).  FM5-NPM1-mCh was generated as described in 27. 

To generate an sgRNA plasmid to target SRRM-2, a guide RNA duplex was designed to insert EYFP at 
the beginning of the endogenous human SRRM2 coding sequence, then cloned downstream the U6 
promoter in the PX458 vector (Addgene Plasmid #48138; gift from Feng Zhang lab). The annealed 
oligonucleotides used to generate the final “pU6-SRRM2gRNA-CMV-FLAG-NLS-SpCas9-2A-mGFP” 
plasmid were as follows: 

SRRM2 sgRNA Forward        5’ CACCGGGCCATGTACAACGGGATC  3’ 

  

SRRM2 sgRNA Reverse        5’  AAACGATCCCGTTGTACATGGCCC   3’ 

 Separately, a gene fragment containing upstream and downstream SRRM2 homology arms, flanking the 
full-length EYFP coding sequence, was synthesized (IDT) then cloned into the pUC19 vector, first 
digested with HindIII and BamHI. The following oligonucleotides were used to create the final “pUC19-
SRRM2 NonCode Homology-EYFP-SRRM2 Exon1 Homology” plasmid: 

              SRRM2 homology Forward     5’ TTGATGATAAGCTTcctttcttcaccactgagctccttcaaggg 3’ 

  SRRM2 homology Reverse      5’ TTGATGATGGATCCccatagcctgcatgtccactcccagacgatgg  3’ 

Sanger sequencing (Genewiz) confirmed gene insertions in full for all constructs. 

Cell culture and cell line generation 

U2OS (a kind gift from Mark Groudine lab, Fred Hutchinson Cancer Research Center), HeLa CCL-2 
(ATCC), HEK-D (see below) and Lenti-X 293T (Takara) cells were cultured in growth medium 
consisting of Dulbecco’s modified Eagle’s medium (GIBCO), 10% fetal bovine serum (Atlanta 
Biologicals), and 10 U/mL Penicillin-Streptomycin (GIBCO), and incubated at 37°C and 5% CO2 in a 
humidified incubator. 

iPSC culture 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.08.483545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483545
http://creativecommons.org/licenses/by-nc-nd/4.0/


Induced pluripotent stem cells were obtained from Allen Institute for Cell Science at the Coriell Institute. 
The iPSC line AICS-0094-024 (Mono-Allelic mEGFP tagged SON WTC iPSC line) was used for our 
experiments. The colonies were expanded and maintained on Matrigel (Corning) in mTeSR Plus medium 
(Stem Cell Technologies). Cells were plated at 3000-10.000 cells per square centimeter in order to obtain 
~75% confluency every 5-7 days. The cells were passaged using ReLeSR (stem cell technologies) and 
split at a 1:10-1:50 ratio. mTeSR plus medium was supplemented with ROCK inhibitor Y-27632 
(Selleckchem) for maximum 24 hours after cryopreservation or passaging. iPSCs were cryopreserved in 
mTeSR Plus medium supplemented with 30% Knock Out Serum Replacement (Gibco Life Technologies) 
and 10% DMSO. 

CRISPR-Cas9 Based Generation of HEK293 Cells Expressing eYFP-tagged SRRM2 

Single HEK293 cells (kind gift from Marc Diamond lab, UT Southwestern) were isolated by fluorescence 
activated cell sorting (FACS). A clonal line termed “HEK-D” was selected for its relatively flat 
morphology and preferable imaging characteristics. Cell line background was validated by STR profiling 
(America Type Culture collection). 

To generate the EYFP-tagged SRRM2 clonal line, HEK-D cells were plated in a 24-well dish so at 70% 
confluency the next day. Lipofectamine-3000 (Thermo Fisher) was used to transfect the two plasmids at 
one-to-one ratio, according to manufacturer’s recommendation. Cells were amplified by successive 
passages to 6-well then 10-cm dishes. At ~Day 10 following transfection, cells were trypsinized, pelleted, 
then re-suspended in flow cytometry buffer (DPBS with 10% fetal bovine serum). Single eYFP-positive 
cells were sorted by FACS (Flow Cytometry Resource Facility, Princeton Department of Molecular 
Biology) into separate wells of 96-well plates. Resulting colonies with expected localization of eYFP 
signal to nuclear speckles (but not cytoplasm) were amplified, and a single clone with relatively high 
fluorescence intensity was selected (“eYFP-SRRM2 48 HEK D”). 

To validate, cells were passaged into single wells of a 96-well plate containing either 200 uL of 
pCRISPRv2-SRRM2 gRNA lentivirus (pooled, 6 gRNAs designed according to published 
recommendations47) or 200 uL of pCRISPRv2-NonTarget gRNA lentivirus. 72 hours later, confluent cells 
were washed, trypsinized, and passaged at 1:8 dilution factor. 96 hours later, confluent cells were plated 
onto a fibronectin-coated, glass-bottom, 96-well plate (MatTek), and eYFP fluorescence was compared 
between experimental (SRRM2 KO) and control (NonTarget) conditions, with confocal microscopy 
performed at 7-days post-lentivirus transduction. eYFP fluorescence was completely abrogated in the 
SRRM2 knockout (>90% of cells) condition, suggesting that eYFP was only integrated at endogenous 
SRRM2 loci. 

Next, whole genome sequencing assessed the number of tagged copies in the hypotriploid HEK293 clone 
featuring three copies of chromosome 16, on which the SRRM2 gene is located. Two of the three copies 
contained the exogenous EYFP sequence between chr16:2,756,364 and chr16:2,756,365, corresponding 
to immediately prior to endogenous SRRM2’s start codon and after the expected upstream noncoding 
sequence. CRISPR-Cas9-mediated genome editing left a single nucleotide polymorphism encoding a 
synonymous codon (Gly6Gly) in tagged SRRM2 loci, otherwise unaltered from the parental sequence. 
Cells were then cultured and imaged as described elsewhere.  

Lentiviral transduction 

For Corelet, Htt-PolyQ, and NPM-1 overexpression, lentivirus was produced by transfecting the transfer 
plasmids, pCMV-dR8.91, and pMD2.G (9:8:1, mass ratio) into LentiX cells grown to approximately 80% 
confluency in 6-well plates using FuGENE HD Transfection Reagent (Promega) per manufacturer’s 
protocol. A total of 3 μg plasmid and 9 μL of transfection reagent were delivered into each well. After 60-
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72 hours, supernatant containing viral particles was harvested and filtered with a 0.45 μm filter (Pall Life 
Sciences). Supernatant was immediately used for transduction or aliquoted and stored at −80°C. Cells 
were seeded at 10% confluency in 96-well plates and 20-200 μL of filtered viral supernatant was added to 
the cells. Media containing virus was replaced with fresh growth medium 24 hr post-infection. Infected 
cells were imaged no earlier than 72 hr after infection. For Htt-PolyQ HeLa lines, cells were transferred to 
a glass 96-well imaging plate coated with fibronectin two days following transduction and imaged 4-6 
days post-transduction.  

 Microscopy 

Images of Corelets, nucleoli, and nuclear speckles were taken with a spinning-disk (Yokogawa CSU-X1) 
confocal microscope with a 100X oil immersion Apo TIRF objective (NA 1.49) and an Andor DU-897 
EMCCD camera on a Nikon Eclipse Ti body. A 488nm laser for imaging GFP and global activation, and 
a 561 was used for imaging mCherry. The imaging chamber was maintained at 37°C and 5% CO2 

(Okolab) with a 96 well plate adaptor. Z-stacks were taken every 300nm for 15 μm using an ASI MS-
2000 stage controller. For drug treatments, DRB (Sigma) or ActD (Sigma) were dissolved in DMSO at 
50mg/mL and 2mg/mL stock concentrations respectively, which was diluted in complete DMEM. Cells 
were treated by replacing media and incubating for 4 hours before imaging.  

Images of Htt-PolyQ were taken on a Nikon A1 laser scanning confocal microscope using a 60x oil 
immersion lens with a numerical aperture of 1.4. A 488nm laser for imaging GFP.  The imaging chamber 
was maintained at 37°C and 5% CO2 (Okolab) with a 96 well plate adaptor.  Z-stacks were taken every 
420nm for 15 μm using an ASI MS-2000 stage controller.  

Image Analysis 

All images were analyzed in Fiji (ImageJ 1.52p)48 and MATLAB 2019b (Mathworks). 

Corelets 

Data was re-analyzed from previous work20. Individual nuclei were cropped by hand and saved as .tifs, 
which were analyzed in MATLAB. Droplets were segmented in the GFP channel by using Otsu’s 
algorithm to identify the nucleus in the first frame; an intensity threshold was defined as two standard 
deviations above the mean of the initial nuclear GFP intensity. This threshold was applied to all following 
frames to identify droplets; regions 4 pixels and smaller were discarded. Then, regionprops was used to 
identify individual domains and calculate their area. Volumes were calculated by assuming perfect 
sphericity, based upon previous work 20,49; distributions were then calculated for each nucleus.  

Nucleoli and nuclear speckles 

Individual nuclei were cropped by hand and saved as .tifs, which were analyzed in MATLAB. Maximum 
projects were generated and used to calculate a threshold for each nucleus and channel, which was set to 
the mean of the image plus two standard deviations. This threshold was applied in three dimensions to 
each z-stack; regionprops3 was used to calculate the volume of each condensate. Condensates below 20 
voxels in size were discarded. CDFs were calculated for each nucleus, rescaled by mean volume, and 
averaged over nuclei. Error was propagated as standard error of the mean.  

PolyQ aggregates 

Individual cells were cropped by hand and saved as .tifs, which were analyzed in MATLAB. A frame of 
maximal mean cytoplasmic brightness was selected to calculate a threshold for the cytoplasm, which was 
set to the mean of the image plus 2.5 standard deviations. This threshold was applied in three dimensions 
to each z-stack; regionprops3 was used to calculate the volume of each aggregate. Aggregates below 16 
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voxels in size were discarded. CDFs were calculated for each nucleus, rescaled by mean volume, and 
averaged over cellular cytoplasms. Error was propagated as standard error of the mean.   

Simulations 

Simulations were performed in MATLAB on the Della cluster (Princeton Research Computing). First, an 
initial configuration of spheres were generated in 3D with periodic boundary conditions, with initial 
sphere volumes drawn from a uniform distribution ranging from 1 to 2 AU. Box size was set based on the 
volume fraction (generally set at 5%). Overlapping spheres were then merged. Sphere merger was 
implemented by randomly selecting a pair of overlapping spheres and replacing them with one new 
spheres centered at the center of mass of the pair. The size of the new sphere was determined by volume 
conservation of the original pair. This was iterated until no pairs of overlapping droplets remained. (For 
“vanishing” simulations employed as controls (Fig. S3,4) all spheres were set to a volume of 1 AU and 
maintained a volume of 1 AU after merger, resulting in spheres “vanishing”.) Then, for each sphere, a 
fractional Brownian motion trajectory with the appropriate α was synthesized (wfbm) for the appropriate 
number of timesteps (generally 105). At each timepoint, each sphere proceeded one step along the 
synthesized trajectory, scaled such that "~1/!�. Spheres were merged as previously described. Merged 
spheres inherited the predetermined trajectory from one of their parent droplets (chosen arbitrarily), 
moving with the appropriate step size. This was repeated for the duration of the synthesized trajectories.  

For injection simulations, the simulation box was empty initially; J spheres were initialized per timestep 
in randomly generated locations (i.e., if ) � .25, a sphere was initialized every fourth timestep, while for 
) � 4, four spheres were initialized per timestep). Then, mergers and sphere diffusion proceeded as 
previously described before the next injection.  

Size distributions were recorded for 20 replicates of each simulation condition, binned, and averaged 
before calculating CCDFs. To calculate the collision rate constant, 960 (20 in the case of the “vanishing” 
control simulations) simulation replicates were performed; for each merger event, the sphere size of the 
merging pair and number of spheres of that size were recorded. Each merger event occurring between 
spheres of volume 
� and 
�  was weighted by a factor of 1/�	
�
�	
�
, where f gives the number 
density of spheres of particular size. Summing over weights of all merger events in each simulation 
replicate and then averaging over replicates gave an estimate of the coagulation kernel value after 
normalization by system size and simulation duration (see Supplementary Note). 
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Figures 

 

Fig. 1: Endogenous nuclear speckles display exponential distributions before and after 
transcriptional inhibition 

a. Example maximum-projected image of induced pluripotent stem cells  tagged with eGFP-SON 
and imaged in three dimensions. Nuclear outlines are highlighted in white. 

b. For each nucleus (� � 453), speckles were segmented in 3 dimensions, and the complementary 
cumulative distribution function (CCDF) calculated, rescaled, and averaged, revealing good 
agreement with an exponential distribution (black dashed line). Error bars reflect standard error of 
the mean over cells.  

c. Nuclear speckles were labeled in HEK-D cells by tagging SRRM-2 with eYFP and imaged in 3 
dimensions; nuclear outlines highlighted in cyan.  

d. Treatment with the transcriptional inhibitor DRB resulted in larger, brighter speckles and aberrant 
nuclear morphology. Nuclear outlines are highlighted in magenta.  

e. The CCDF was calculated for both nontreated control (� � 85; cyan points) and following 4 
hours of treatment with 50μg/mL DRB (� � 78; magenta points), resulting in an increase in 
average speckle size from 0.92 � 0.02 µm� to 1.16 � 0.03 µm�(mean�SEM), giving linear 
CCDFs with slightly different slopes on a semi-log plot. Collapsing by rescaling by average 
speckle volume (inset) confirms that both distributions remain exponential. Error bars reflect 
standard error of the mean over cells. 
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Fig 2: Synthetic nuclear condensates display exponential distributions as they coarsen. 

a. The synthetic Corelet system produces nuclear condensates on demand. The FUSN-mCherry-
sspB and iLID-eGFP-ferritin fusion proteins are co-expressed in the nucleus. In the presence of 
blue light, sspB and iLiD bind quickly, decorating the 24-mer ferritin core with oligomerized 
FUSN, driving oligomerization and phase separation (top row).  

b. The CCDF of condensate volumes for the nucleus shown in Fig. 1A plotted semi-log reveals a 
progressively decreasing slope as the droplets coarsen in time following the initial quench (<5 
minutes) and the mean condensate size increases.  

c. For 18 nuclei, CCDFs rescaled by mean condensate volume were obtained at the timepoints 
depicted in Fig. 1B (reanalyzed data from Lee 2021), and compared to the expectation for an 
exponential distribution (dashed black line).  

d. To further verify that the distribution was exponential, we calculated the mass-weighted or 

particle-wise mean and variance, defined as �
�� � �����

����
 and ��

� � ��
��� � �
��� respectively. 

These quantities were calculated for each nucleus every 25 minutes starting from 5 minutes to 
105 minutes following initial activation, variance was plotted against mean on a log-log plot, and 
compared to the expected slope of 2 for an exponential distribution.  
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Fig. 3: Monte Carlo simulations of subdiffusive coalescence also produce exponential distributions.  

a. Spheres were randomly placed in a box with periodic boundary conditions and allowed to 
coalesce into larger spheres upon collision. Sphere dynamics are dictated by fractal Brownian 
motion (cf. example trajectories), resulting in faster coalescence for larger subdiffusive exponent 
α (see Materials and Methods).  

b. Simulations of 1000 spheres with initial volumes drawn from a uniform distribution between 1 
and 2 were run for 10� timesteps at a volume fraction of 5%, for varying subdiffusive exponents 
α from 0.25 to 1. Distributions first were averaged over 20 replicates before calculating the CDF 
and CCDF. The CCDF, rescaled by mean sphere volume, was plotted semi-log for comparison to 
an exponential (black dashed line).   
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Fig. 4: PolyQ aggregates exhibit slow nucleation dynamics and a power-law cluster-size 
distribution. 

a. HeLa cells were transduced with lentivirus to express eGFP-Htt-PolyQ constructs of mutant 
Huntingtin exon 1 composed of N17, QN, and C38 domains. Four days following transduction, 
cells infected with eGFP-Htt-Q31 had a diffuse GFP signal, while bright micron-scale puncta 
were evident in those infected with eGFP-Htt-Q73.  

b. Cells expressing eGFP-Htt-Q73 were imaged for 12 hours. Aggregates were observed to merge 
upon contact (inset). PolyQ growth was quantified over � � 5 cells imaged every 15 minutes for 
12 hours. Subtracting the initial projected aggregate area and averaging revealed an increase in 
aggregate area over time at a rate of 0.04 � .01 µm�/s.  

c. PolyQ aggregate cluster-size distribution was calculated by averaging per-cell cumulative 
distribution functions over cells (� � 114) between 4 and 6 days after lentiviral infection. The 
CCDF was fit to a power law, yielding  CCDF	

 4 
�.��!�.��. The CCDF was also compared to 
the expectation for an exponential distribution (inset).   
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Fig. 5: Simulations incorporating gradual material production demonstrate a power law.  

a. Simulations were modified to incorporate the gradual introduction of material at a rate of ) 
spheres per unit time, starting with an empty simulation cell of total volume such that following 
injection of 1200 spheres whose initial sizes were again drawn from a uniform distribution 
between 1 and 2, a volume fraction of 4% was obtained. This protocol is summarized by the plot 
showing total particle volume increasing with time with a slope corresponding to ).  

b. The cluster-size distribution was calculated for systems following steady injection of 1200 
spheres and plotted both semi-log and log-log (inset). Conditions with high ) fit an exponential 
distribution, as shown in CCDF, while lower ) gave a better fit to a power law with slope close to 
-0.5 based on log-log plot of CCDF (inset, dashed black line).  

c. Merger events between spheres were mapped for  ) � 5 (left, magenta) and ) � .01 (right, dark 
green) for systems following injection of 50 spheres each. Each node represents an injected 
sphere; edges between nodes signify mergers during the course of the simulation.  

d. Mergers involving “monomer” spheres (i.e., spheres of the minimum size) were analyzed for 
) � .01 and ) � 5. The distribution of sizes of spheres with which ‘monomeric’ spheres merged, 
normalized by the mean sphere size at the moment of merger was calculated and plotted for  960 
simulation replicates of each condition.  

e. The “age” of spheres, normalized by total simulation duration (i.e., the time it took to inject 1200 
spheres at varying )) with which monomeric spheres merged was calculated for 960 replicates of 
) � .01 and ) � 5.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.08.483545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483545
http://creativecommons.org/licenses/by-nc-nd/4.0/


f. Injection simulations were run with ) � .01 for varying  . The CCDF was calculated and plotted, 
demonstrating that for low  , an exponential distribution is obtained. The CCDF for the 
subdiffusive injection case was also calculated and plotted for comparison to a power law (inset).  

g. For each   and ), simulations were run until approximately 1200 particles were injected. The 
coefficient of variation was calculated for the resulting distributions and plotted as a function of 
., the ratio of the merger timescale to the injection timescale. 

 

 

Fig. 6:  A “rich get richer” effect results in power-law-like size distributions.  

a. Schematic depicting the “rich get richer” effect. For the Stokes-Einstein diffusion of condensates, 
increased radius of large condensates is compensated for by a decrease in their mobility. 
Artificially inverting this relation results in increased collisions involving larger condensates, 
yielding a strong “rich get richer” effect.  

b. Cluster-size distributions were calculated varying the scaling exponent 6 of the diffusion 

coefficient with sphere size (i.e., "~ �

"�

 with 6 ranging from -2 to 2 and were plotted as CCDFs 

in semi-log to compare to an exponential (dashed black line) in log-log to compare to a power 
law (inset).  
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